Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T01:25:34.347Z Has data issue: false hasContentIssue false

Example of microprocessing in a natural polymeric fiber: Role of reeling stress in spider silk

Published online by Cambridge University Press:  01 August 2006

M. Elices*
Affiliation:
Departamento de Ciencia de Materiales, Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
G.V. Guinea
Affiliation:
Departamento de Ciencia de Materiales, Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
G.R. Plaza
Affiliation:
Departamento de Ciencia de Materiales, Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
J.I. Real
Affiliation:
Departamento de Ciencia de Materiales, Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
J. Pérez-Rigueiro
Affiliation:
Departamento de Ciencia de Materiales, Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
*
a) Address all correspondence to this author.e-mail: melices@mater.upm.es
Get access

Abstract

Spider silk fibers were obtained by the monitored forced silking method. This procedure allows measurement of the silking force during the process and retrieving the fibers so their tensile behavior can be characterized. Silking conditions, including the reeling speed and the use of an anaesthetising gas, were varied to ascertain their influence on the tensile properties of the silk. In all cases, it was found that the tensile properties are determined by the silking stress, obtained by dividing the silking force by the diameter of the fiber. This suggests that the sophisticated spinning system of the spider can be characterized essentially by a single parameter, which controls the properties of spider silk almost independently of the reeling conditions.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Structural Biological Materials edited by Elices, M. (Pergamon Press, Amsterdam, The Netherlands, 2000).Google Scholar
2.Kaplan, D.L., Lombardi, S.J., Muller, W.S., Fossey, S.A. Silks, in Biomaterials, Novel Materials from Biological Sources edited by Byrom, D. (Stockton Press, New York, 1991), pp. 153.Google Scholar
3.Silk Polymers, Materials Science and Biotechnology edited by Kaplan, D., Adams, W.W., Farmer, B., and Viney, C. (American Chemical Society, Washington, DC, 1994).Google Scholar
4.Elices, M., Pérez-Rigueiro, J., Plaza, G.R., Guinea, G.V.: Finding inspiration in Argiope trifasciata silk fibers. J. Mater. 57, 60 (2005).Google Scholar
5.Marsh, R.B., Corey, L., Pauling, L.: Structure of silk. Biochim. Biophys. Acta 16, 1 (1955).CrossRefGoogle ScholarPubMed
6.Simmons, A.H., Michal, C.A., Jelinski, L.W.: Molecular orientation and two-component nature of the crystalline fraction of spider dragline silk. Science 271, 84 (1996).CrossRefGoogle ScholarPubMed
7.van Beek, J.D., Kümmerlen, J., Vollrath, F., Meier, B.H.: Supercontracted spider dragline silk: A solid-state NMR study of the local structure. Int. J. Biol. Macromol. 24, 173 (1999).CrossRefGoogle Scholar
8.Jelinski, J.W., Blye, A., Liivak, O., Michal, C., LaVerde, G., Seidel, A., Shah, N., Yang, Z.: Orientation, structure, wet-spinning and molecular basis for supercontraction of spider dragline silk. Int. J. Biol. Macromol. 24, 197 (1999).CrossRefGoogle ScholarPubMed
9.Zhou, H. and Zhang, Y.: Hierarchical chain model of spider silk capture silk elasticity. Phys. Rev. Lett. 94 028104 (2005).CrossRefGoogle ScholarPubMed
10.Kerkam, K., Viney, C., Kaplan, D., Lombardi, S.: Liquid crystallinity of natural silk secretions. Nature 349, 596 (1991).CrossRefGoogle Scholar
11.Vollrath, F., Knight, D.P.: Liquid crystalline spinning of spider silk. Nature 410, 541 (2001).CrossRefGoogle ScholarPubMed
12.Jin, H-J., Kaplan, D.L.: Mechanisms of silk processing in insects and spiders. Nature 424, 1057 (2003).CrossRefGoogle ScholarPubMed
13.Lazaris, A., Arcidiacono, S., Huang, Y., Zhou, J-F., Duguay, F., Chretien, N., Welsh, E.A., Soares, J.W., Karatzas, C.N.: Spider silk fibers spun from soluble recombinant silk produced in mammalian cells. Science 295, 472 (2002).CrossRefGoogle ScholarPubMed
14.Xu, M., Lewis, R.V.: Structure of a protein superfiber: Spider dragline silk. Proc. Natl. Acad. Sci. USA 87, 7120 (1990).CrossRefGoogle ScholarPubMed
15.Gatesy, J., Hayashi, C., Motriuk, D., Woods, J., Lewis, R.: Extreme diversity, conservation, and convergence of spider silk fibroin sequences. Science 291, 2603 (2001).CrossRefGoogle ScholarPubMed
16.Madsen, B., Shao, Z.Z., Vollrath, F.: Variability in the mechanical properties of spider silks on three levels: Interspecific, intraspecific and intraindividual. Int. J. Biol. Macromol. 24, 301 (1999).CrossRefGoogle ScholarPubMed
17.Garrido, M.A., Elices, M., Viney, C., Pérez-Rigueiro, J.: Active control of spider silk strength: Comparison of drag line spun on vertical and horizontal surfaces. Polymer 43, 1537 (2002).CrossRefGoogle Scholar
18.Guess, K.B., Viney, C.: Thermal analysis of major ampullate (drag line) spider silk: The effect of spinning rate on tensile modulus. Thermochim. Acta 315, 61 (1998).CrossRefGoogle Scholar
19.Madsen, B., Vollrath, F.: Mechanics and morphology of silk drawn from anesthetized spiders. Naturwissenschaften 87, 148 (2000).CrossRefGoogle ScholarPubMed
20.Pérez-Rigueiro, J., Elices, M., Plaza, G., Real, J.I., Guinea, G.V.: The effect of the spinning forces on spider silk properties. J. Exp. Biol. 208, 2633 (2005).CrossRefGoogle ScholarPubMed
21.Pérez-Rigueiro, J., Elices, M., Plaza, G.R., Real, J.I., Guinea, G.V.: The influence of anaesthesia on the tensile properties of spider silk. J. Exp. Biol. 209, 320 (2006).CrossRefGoogle ScholarPubMed
22.Pérez-Rigueiro, J., Viney, C., Llorca, J., Elices, M.: Silkworm silk as an engineering material. J. Appl. Polym. Sci. 70, 2439 (1998).3.0.CO;2-J>CrossRefGoogle Scholar
23.Guinea, G.V., Elices, M., Real, J.I., Gutiérrez, S., Pérez-Rigueiro, J.: Reproducibility of the tensile properties of spider (Argiope trifasciata) silk obtained by forced silking. J. Exp. Zool. 303A, 37 (2005).CrossRefGoogle Scholar
24.Pérez-Rigueiro, J., Elices, M., Llorca, J., Viney, C.: Tensile properties of Argiope trifasciata drag line silk obtained from the spider's web. J. Appl. Polym. Sci. 82, 2245 (2001).CrossRefGoogle Scholar
25.Pérez-Rigueiro, J., Elices, M., Guinea, G.V.: Controlled supercontraction tailors the tensile behaviour of spider silk. Polymer 44, 3733 (2003).CrossRefGoogle Scholar
26.Vollrath, F., Madsen, B., Shao, Z.: The effect of spinning conditions on the mechanics of a spider's dragline silk. Proc. R. Soc. London B: Biol. Sci. 268, 2339 (2001).CrossRefGoogle ScholarPubMed
27.Ortlepp, C.S., Gosline, J.M.: Consequences of forced silking. Biomacromolecules 5, 727 (2004).CrossRefGoogle ScholarPubMed
28.Termonia, Y. Molecular modelling of the stress/strain behavior of spider dragline, in Structural Biological Materials edited by Elices, M. (Pergamon Press, Amsterdam, The Netherlands, 2000), pp. 335349.Google Scholar