Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T21:48:46.903Z Has data issue: false hasContentIssue false

Enthalpies of formation of CdSxSe1–x solid solutions

Published online by Cambridge University Press:  31 January 2011

Fen Xu
Affiliation:
Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California at Davis, Davis, California 95616
Xuchu Ma
Affiliation:
Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California at Davis, Davis, California 95616
Susan M. Kauzlarich
Affiliation:
Department of Chemistry, University of California at Davis, Davis, California 95616
Alexandra Navrotsky*
Affiliation:
Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California at Davis, Davis, California 95616
*
a) Address all correspondence to this author. e-mail: anavrotsky@ucdavis.edu
Get access

Abstract

The enthalpies of oxidative drop solution (ΔHds) for a series of CdSxSe1–x samples were obtained by calorimetry in molten 3Na2O·4MoO3 at 975 K. They become more exothermic linearly with increasing S content. The enthalpies of formation from the elements (ΔHf,el) depend linearly on molar ratio of S/(S + Se). This is the first report of thermodynamic properties of CdSxSe1–x solid solutions measured by any direct calorimetric method. The enthalpies of formation at 298 K from the binary chalcogenide end-members (ΔHf,CdM) (M = S, Se) for wurtzite CdSxSe1–x are found to be zero within experimental errors. These results strongly suggest that wurtzite CdS and CdSe form an ideal solid solution, despite a substantial difference in molar volume and anion radius. This implies that size difference affects thermodynamics less strongly when larger and more polarizable anions are mixed in chalcogenides than when cations are mixed in oxides.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Mane, R.S. and Lokhande, C.D.: Studies on chemically deposited cadmium sulphoselenide (CdSSe) films. Thin Solid Films 304, 56 (1997).CrossRefGoogle Scholar
2Pan, A.L., Liu, R.B., Wang, F.F., Xie, S.S., Zou, B.S., Zacharias, M., and Wang, Z.L.: High-quality alloyed CdSxSe1-x whiskers as waveguides with tunable stimulated emission. J. Phys. Chem. B 110, 22313 (2006).CrossRefGoogle ScholarPubMed
3Mei, G.: A photoluminescence study of CdSxSe1-x semiconductor quantum dots. J. Phys. Condens. Matter 4, 7521 (1992).CrossRefGoogle Scholar
4Nogami, M., Kato, A., and Tanaka, Y.: Sol-gel preparation of CdSxSe1-x solid-solution microcrystal-doped glasses. J. Mater. Sci. 28, 4129 (1993).CrossRefGoogle Scholar
5Perna, G., Pagliara, S., Capozzi, V., Ambrico, M., and Ligonzo, T.: Optical characterization of CdSxSe1-x films grown on quartz substrate by pulsed laser ablation technique. Thin Solid Films 349, 220 (1999).CrossRefGoogle Scholar
6Inorganic Synthesis, edited by Hodes, G., Manssen, J., and Cahen, D. (Wiley, New York, 1983).Google Scholar
7Premaratne, K., Akuranthilaka, S.N., Dharmadasa, I.M., and Samantilleka, A.P.: Electrodeposition using non-aqueous solutions at 170 degrees C and characterization of US, CdSxSe1-x) and CdSe compounds for use in graded band gap solar cells. Renewable Energy 29, 549 (2003).CrossRefGoogle Scholar
8Roussignol, P., Ricard, D., and Flytzanis, C.: Quantum confinement mediated enhancement of optical Kerr effect in CdSxSe1-xsemiconductor microcrystallites. Appl. Phys. B 51, 437 (1990).CrossRefGoogle Scholar
9Vaynberg, B., Matusovsky, M., Rosenbluh, M., Kolobkova, E., and Lipovskii, A.: High optical nonlinearity of CdSxSe1-xmicrocrystals in fluorine-phosphate glass. Opt. Commun. 132, 307 (1996).CrossRefGoogle Scholar
10Westphaling, R., Bauer, S., Klingshirn, C., Reznitsky, A., and Verbin, S.: Photoluminescence quantum efficiency of various ternary II-VI semiconductor solid solutions. J. Cryst. Growth 185, 1072 (1998).Google Scholar
11Hurwitz, C.E.: Efficient visible lasers of CdSxSe1-x by electron-beam excitation. Appl. Phys. Lett. 8, 243 (1966).CrossRefGoogle Scholar
12Johnston, W.D.: Characteristics of optically pumped platelet lasers of ZnO, CdS, CdSe, and CdS0.6Se0.4 between 300 degrees and 80 degrees K. J. Appl. Phys. 42, 2731 (1971).CrossRefGoogle Scholar
13Roxlo, C.B., Putnam, R.S., and Salour, M.M.: Optically pumped semiconductor platelet lasers. IEEE J. Quantum Electron. 18, 338 (1982).CrossRefGoogle Scholar
14Dutta, J., Pal, R., Chattopadhyay, S., Chaudhuri, S., and Pal, A.K.: Studies on CdSxSe1-x films prepared by 2-zone hot-wall technique. Phys. Status Solidi A 139, 109 (1993).CrossRefGoogle Scholar
15Gupta, P., Chaudhuri, S., and Pal, A.K.: Photoconductivity in CdSxSe1-x films. J. Phys. D: Appl. Phys. 26, 1709 (1993).CrossRefGoogle Scholar
16Handelman, E.T. and Kaiser, W.: Optical absorption of CdS-CdSe mixed crystals prepared by solid-state diffusion. J. Appl. Phys. 35, 3519 (1964).CrossRefGoogle Scholar
17Liu, Y., Xu, Y., Li, J.P., Zhang, B., Wu, D., and Sun, Y.H.: Synthesis of CdSxSe1-x nanorods via a solvothermal route. Mater. Res. Bull. 41, 99 (2006).CrossRefGoogle Scholar
18Perna, G., Pagliara, S., Capozzi, V., Ambrico, H., and Pallara, M.: Excitonic luminescence of CdSxSe1-x films deposited by laser ablation on Si substrate. Solid State Commun. 114, 161 (2000).CrossRefGoogle Scholar
19Korostelin, Y.V. and Kozlovsky, V.I.: Vapour growth of II-VI solid solution single crystals by contact-free technique. J. Alloys Compd. 371, 25 (2004).CrossRefGoogle Scholar
20Hersh, L.S., Navrotsky, A., and Kleppa, O.J.: Enthalpies of mixing in silver bromide-alkali bromide and thallium chloride-alkali chloride liquid mixtures. J. Chem. Phys. 42, 3752 (1965).CrossRefGoogle Scholar
21Navrotsky, A.: Thermodynamics of A3O4-B3O4 spinel solid solutions. J. Inorg. Nucl. Chem. 31, 59 (1969).CrossRefGoogle Scholar
22Rane, M.V. and Navrotsky, A.: Enthalpies of formation of lead zirconate titanate (PZT) solid solutions. J. Solid State Chem. 161, 402 (2001).CrossRefGoogle Scholar
23Lee, T.A., Navrotsky, A., and Molodetsky, I.: Enthalpy of formation of cubic yttria-stabilized zirconia. J. Mater. Res. 18, 908 (2003).CrossRefGoogle Scholar
24Wang, M.J. and Navrotsky, A.: Enthalpy of formation of LiNiO2, LiCoO2 and their solid solutions LiNi1-xCOxO2. Solid State Ionics 166, 167 (2004).CrossRefGoogle Scholar
25Cheng, J.J., Navrotsky, A., Zhoum, X.D., and Anderson, H.U.: Thermochemistry of La1-xSrxFeO3-d solid solutions (0.0 9 x 9 1.0, 0.0 9 d 9 0.5). Chem. Mater. 17, 2197 (2005).CrossRefGoogle Scholar
26Wang, M.J. and Navrotsky, A.: Thermochemistry of Li1+xMn2-xO4 (0 9 x 9 1/3) spinel. J. Solid State Chem. 178, 1182 (2005).CrossRefGoogle Scholar
27Chen, W. and Navrotsky, A.: Thermochemical study of trivalent-doped ceria systems: CeO2-MO1.5 (M = La, Gd, and Y). J. Mater. Res. 21, 3242 (2006).CrossRefGoogle Scholar
28Chen, W., Navrotsky, A., Xiong, Y.P., and Yokokawa, H.: Energetics of cerium-zirconium substitution in the xCe0.8 Y0.2O1.9-(1-x)Zr0.8Y0.2O1.9 system. J. Am. Ceram. Soc. 90, 584 (2007).CrossRefGoogle Scholar
29Simoncic, P. and Navrotsky, A.: Energetics of rare-earth-doped hafnia. J. Mater. Res. 22, 876 (2007).CrossRefGoogle Scholar
30Zhang, J., Zhao, Y., Xu, H., Li, B., Weidner, D.J., and Navrotsky, A.: Elastic properties of yttrium-doped BaCeO3 perovskite. Appl. Phys. Lett. 90, 161903 (2007).CrossRefGoogle Scholar
31Mazeina, L., Navrotsky, A., and Greenblatt, M.: Calorimetric determination of energetics of solid solutions of UO2+x with CaO and Y2O3. J. Nucl. Mater. 373, 39 (2008).CrossRefGoogle Scholar
32Deore, S. and Navrotsky, A.: Oxide melt solution calorimetry of sulfides: Enthalpy of formation of sphalerite, galena, greenockite, and hawleyite. Am. Mineral. 91, 400 (2006).CrossRefGoogle Scholar
33Deore, S., Xu, F., and Navrotsky, A.: Oxide melt solution calorimetry of selenides: Enthalpy of formation of zinc, cadmium, and lead selenide. Am. Mineral. 93, 779 (2008).CrossRefGoogle Scholar
34Mochizuki, K.: Composition control of CdSxSe1-x thin-layers grown on CdS substrate by a solid-state diffusion technique. Jpn. J. Appl. Phys., Part 1 21, 639 (1982).CrossRefGoogle Scholar
35Mochizuki, K., Suzuki, E., Masumoto, M., and Kiyosawa, T.: Solid-vapor equilibrium-constant for II-VI ternary solid-solutions. Mater. Lett. 9, 526 (1990).CrossRefGoogle Scholar
36El-Nahass, M.M.: Structural and electrical-properties of cadmiumsulfo-selenide solid-solutions. J. Mater. Sci.-Mater. Electron. 3, 71 (1992).CrossRefGoogle Scholar
37Navrotsky, A.: Progress and new directions in high-temperature calorimetry. Phys. Chem. Miner. 2, 89 (1977).CrossRefGoogle Scholar
38Navrotsky, A.: Progress and new directions in high temperature calorimetry revisited. Phys. Chem. Miner. 24, 222 (1997).CrossRefGoogle Scholar
39Denton, A.R. and Ashcroft, N.W.: Vegard's law. Phys. Rev. A: At. Mol. Opt. Phys. 43, 3161 (1991).CrossRefGoogle ScholarPubMed
40Vegard, L.: X-rays in the service of research on matter. Z. Kristallogr. 67, 239 (1928).CrossRefGoogle Scholar
41Khansevarov, R.I., Ryvkin, S.M., and Ageeva, I.N.: The dependence of the width of the forbidden zone on the composition in the solid solutions CdS-CdSe. Soviet Phys. Tech. Phys. 3, 453 (1958).Google Scholar
42Jug, K. and Tikhomirov, V.A.: Anion substitution in zinc chalcogenides. J. Comput. Chem. 27, 1088 (2006).CrossRefGoogle ScholarPubMed
43Davies, P.K. and Navrotsky, A.: Quantitative correlations of deviations from ideality in binary and pseudobinary solid-solutions. J. Solid State Chem. 46, 1 (1983).CrossRefGoogle Scholar
44Davies, P.K.: Thermodynamics of solid solution formation. Ph.D., Thesis, Arizona State University, 1981.CrossRefGoogle Scholar
45Shannon, R.D. and Vincent, H.: Relationships between covalency, interatomic distances, and magnetic properties in halids and chalcogenides. Struct Bond. (Berlin) 19, 1 (1974).CrossRefGoogle Scholar
46Levelut, C., Ramos, A., Petiau, J., and Robino, M.: EXAFS study of the local-structure in CdSxSe1-x compounds. Mater. Sci. Eng., B 8, 251 (1991).CrossRefGoogle Scholar
47Davies, P.K. and Navrotsky, A.: Thermodynamics of solid-solution formation in NiO-MgO and NiO-ZnO. J. Solid State Chem. 38, 264 (1981).CrossRefGoogle Scholar
48Wiedemeier, H. and Sigai, A.G.: Phase studies of the systems Mn-S, Mn-Se, and MnS-MnSe. High Temp. Sci. 1, 18 (1969).Google Scholar
49Chemical Thermodynamics of Selenium, edited by Olin, A., Noläng, B., Ōhman, L-O., Osadchii, E., and Rosén, E. (Elsevier B.V., Amsterdam, 2005).Google Scholar
50Majzlan, J., Navrotsky, A., and Neil, J.M.: Energetics of anhydrite, barite, celestine, and anglesite: A high-temperature and differential scanning calorimetry study. Geochim. Cosmochim. Acta 66, 1839 (2002).CrossRefGoogle Scholar
51Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 bar Pressure and at Higher Temperatures, edited by Robie, R.A. and Hemingway, B.S., Geol, U.S.. Surv. Bull. 2131 (United States Government Printing Office, Washington, 1995).Google Scholar
52Pauling, L.: Nature of the Chemical Bond (Cornell University Press, Ithaca, NY, 1960).Google Scholar