Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T10:44:53.420Z Has data issue: false hasContentIssue false

Enhancement of diamond seeding on aluminum nitride dielectric by electrostatic adsorption for GaN-on-diamond preparation

Published online by Cambridge University Press:  17 January 2020

Xin Jia
Affiliation:
Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
Jun-jun Wei*
Affiliation:
Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
Yabo Huang
Affiliation:
Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
Siwu Shao
Affiliation:
Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
Kang An
Affiliation:
Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
Yuechan Kong
Affiliation:
Nanjing Electronic Devices Institute, China Electronic Technology Group Corporation, Nanjing 210016, China
Lishu Wu
Affiliation:
Nanjing Electronic Devices Institute, China Electronic Technology Group Corporation, Nanjing 210016, China
Zhina Qi
Affiliation:
Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
Jinlong Liu
Affiliation:
Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
Liangxian Chen
Affiliation:
Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
Chengming Li
Affiliation:
Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
*
a)Address all correspondence to this author. e-mail: weijj@ustb.edu.cn
Get access

Abstract

The development of GaN-on-diamond devices offers bright prospects for the creation of high-power density electronics. This article presents a process of fabricating GaN-on-diamond structure by depositing diamond films on dual sides, including heat dissipation diamond film and sacrificial carrier diamond film. Prior to heat dissipation diamond film layer preparation, aluminum nitride (AlN) is chosen as a dielectric layer and pretreated by nanodiamond (ND) particles, to enhance the nucleation density. Zeta potential measurements and X-ray photoelectron spectroscopy are used to analyze the AlN surface after each treatment. The results show that oxygen-terminated ND particles tend to adhere to an AlN surface because the oxygen-terminated NDs have –COOH and –OH groups, and hold a negative potential. On the contrary, fluorine-terminated AlN prefers to attract the hydrogen-terminated ND seeds, which resulted in higher diamond nucleation density. Based on this preliminary study, a dense high-quality GaN-on-diamond wafer is successfully produced by using AlN as the dielectric layer and a diamond film as the sacrificial carrier.

Type
Article
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

b)

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

References

Sun, H., Simon, R.B., Pomeroy, J.W., Francis, D., Faili, F., Twitchen, D.J., Kuball, M.: Reducing GaN-on-diamond interfacial thermal resistance for high power transistor applications. Appl. Phys. Lett. 106, 111906 (2015).CrossRefGoogle Scholar
Liu, D., Francis, D., Faili, F., Middleton, C., Anaya, J., Pomeroy, J. W., Twitchen, D. J., Kuball, M.: Impact of diamond seeding on the microstructural properties and thermal stability of GaN-on-diamond wafers for high-power electronic devices. Scr. Mater. 128, 5760 (2017).CrossRefGoogle Scholar
Yates, L., Anderson, J., Gu, X., Lee, G., Bai, T., Mecklenburg, M., Aoki, T., Goorsky, M.S., Kuball, M., Piner, E. L., Graham:, S.Low thermal boundary resistance interfaces for GaN-on-diamond devices. ACS Appl. Mater. Interfaces 10, 2430224309 (2018).CrossRefGoogle ScholarPubMed
Jia, X., Wei, J., Kong, Y., Li, C., Liu, J., Chen, L., Sun, F., Wang, X.: The influence of dielectric layer on the thermal boundary resistance of GaN-on-diamond substrate. Surf. Interface Anal. 51, 783790 (2019).CrossRefGoogle Scholar
Zhou, Y., Anaya, J., Pomeroy, J., Sun, H., Gu, X., Xie, A., Beam, E., Becker, M., Grotjohn, T.A., Lee, C., Kuball, M.: Barrier-layer optimization for enhanced GaN-on-diamond device cooling. ACS Appl. Mater. Interfaces 9, 3441634422 (2017).CrossRefGoogle ScholarPubMed
Cui, J.B., Ma, Y.R., Zhang, J.F., Chen, H., Fang, R.C.: Growth and characterization of diamond film on aluminum nitride. Mater. Res. Bull. 31, 781785 (1996).CrossRefGoogle Scholar
Wang, W.L., Zhang, R.Q., Liao, K.J., Sun, Y.W., Wang, B.B.: Nucleation and growth of diamond films on aluminum nitride by hot filament chemical vapor deposition. Diamond Relat. Mater. 9, 16601663 (2000).CrossRefGoogle Scholar
Cervenka, J., Lau, D.W.M., Dontschuk, N., Shimoni, O., Silvestri, L., Ladouceur, F., Duvall, S.G., Prawer, S.: Nucleation and chemical vapor deposition growth of polycrystalline diamond on aluminum nitride: Role of surface termination and polarity. Cryst. Growth Des. 13, 34903497 (2013).CrossRefGoogle Scholar
Hees, J., Heidrich, N., Pletschen, W., Sah, R.E., Wolfer, M, Williams, O A., Lebedey, V., Nebel, C E., Ambacher, O.: Piezoelectric actuated micro-resonators based on the growth of diamond on aluminum nitride thin films. Nanotechnology 24, 025601 (2012).CrossRefGoogle ScholarPubMed
Wang, T., Handschuh-Wang, S., Zhang, S., Zhou, X., Tang, Y.: Enhanced nucleation of diamond on three dimensional tools via stabilized colloidal nanodiamond in electrostatic self-assembly seeding process. J. Colloid Interface Sci. 506, 543552 (2017).CrossRefGoogle ScholarPubMed
Pobedinskas, P., Degutis, G., Dexters, W., Janssen, W., Janssens, S.D., Coningss, B., Ruttens, B., D’haen, J., Boyen, H. G., Hardy, A., Van bael, M.K., Haenen, K.: Surface plasma pretreatment for enhanced diamond nucleation on AlN. Appl. Phys. Lett. 102, 201609 (2013).CrossRefGoogle Scholar
Yoshikawa, T., Reusch, M., Zuerbig, V., Cimalla, V., Lee, K. H., Kurzyp, M., Arnault, J. C, Nebel, C.E., Ambacher, O., Lebedev, V.: Electrostatic self-assembly of diamond nanoparticles onto Al- and N-polar sputtered aluminum nitride surfaces. Nanomaterials 6, 217 (2016).CrossRefGoogle ScholarPubMed
Kulakova, I.I.: Surface chemistry of nanodiamonds. Phys. Solid State 46, 636643 (2004).CrossRefGoogle Scholar
Kathi, J. and Rhee, K.Y.: Surface modification of multi-walled carbon nanotubes using 3-aminopropyltriethoxysilane. J. Mater. Sci. 43, 3337 (2008).CrossRefGoogle Scholar
Ji, S., Jiang, T., Xu, K., Li, S.: FTIR study of the adsorption of water on ultradispersed diamond powder surface. Appl. Surf. Sci. 133, 231238 (1998).CrossRefGoogle Scholar
Liu, X., Yu, T., Wei, Q., Yu, Z., Xu, X.: Enhanced diamond nucleation on copper substrates by employing an electrostatic self-assembly seeding process with modified nanodiamond particles. Colloids Surf., A 412, 8289 (2012).CrossRefGoogle Scholar
Xu, X., Yu, Z., Zhu, Y., Wang, B.: Effect of sodium oleate adsorption on the colloidal stability and zeta potential of detonation synthesized diamond particles in aqueous solutions. Diamond Relat. Mater. 14, 206212 (2005).CrossRefGoogle Scholar
Williams, O.A., Hees, J., Dieker, C., Jager, W., Kirste, L., Nebel, C. E.: Size-dependent reactivity of diamond nanoparticles. ACS Nano 4, 48244830 (2010).CrossRefGoogle ScholarPubMed
Mandal, S., Thomas, E.L.H., Middleton, C., Gines, L., Griffiths, O T., Kappers, M J., Oliver, R A., Wallis, D J., Goff, L E., Lynch, S A., Kuball, M., Williams, O A.: Surface zeta potential and diamond seeding on gallium nitride films. ACS Omega 2, 72757280 (2017).CrossRefGoogle ScholarPubMed
Slack, G.A., Tanzilli, R.A., Pohl, R.O., Vandersande, J.W.: The intrinsic thermal conductivity of AIN. J. Phys. Chem. Solids 48, 641647 (1987).CrossRefGoogle Scholar
Rosenberger, L., Baird, R., McCullen, E., Auner, G., Shreve, G.: XPS analysis of aluminum nitride films deposited by plasma source molecular beam epitaxy. Surf. Interface Anal. 40, 12541261 (2008).CrossRefGoogle Scholar
Dalmau, R., Collazo, R., Mita, S., Sitar, Z.: X-ray photoelectron spectroscopy characterization of aluminum nitride surface oxides: Thermal and hydrothermal evolution. J. Electron. Mater. 36, 414419 (2007).CrossRefGoogle Scholar
Bowen, P., Highfield, J.G., Mocellin, A., Ring, T.: Degradation of aluminum nitride powder in an aqueous environment. J. Am. Ceram. Soc. 73, 724728 (1990).CrossRefGoogle Scholar
Bailey, C.L., Mukhopadhyay, S., Wander, A., Searle, B.G., Harrison, N.M.: Structure and stability of α-AlF3 surfaces. J. Phys. Chem. C 113, 49764983 (2009).CrossRefGoogle Scholar
König, D. and Ebest, G.: The negatively charged insulator–semiconductor structure: Concepts, technological considerations and applications. Solid-State Electron. 44, 111116 (2000).CrossRefGoogle Scholar
König, D., Ebest, G., Scholz, R., Gemming, S., Thurzo, I., Kampen, T.U., Zahn, D.R.T.: Evidence for high negative charge densities in AlF3 coatings on oxidized silicon: A promising source for large drift fields. Phys. E 14, 259262 (2002).CrossRefGoogle Scholar
Hees, J., Kriele, A., and Williams, O.A.: Electrostatic self-assembly of diamond nanoparticles. Chem. Phys. Lett. 509, 1215 (2011).CrossRefGoogle Scholar
Williams, O.A., Hees, J., Dieker, C., Jager, W., Kirste, L., Nebel, C E.: Size-dependent reactivity of diamond nanoparticles. ACS Nano 4, 4824 (2010).CrossRefGoogle ScholarPubMed