Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T14:55:57.276Z Has data issue: false hasContentIssue false

Enhanced thermal stability of the devitrified nanoscale icosahedral phase in novel multicomponent amorphous alloys

Published online by Cambridge University Press:  01 April 2006

K.B. Kim*
Affiliation:
FG Physikalische Metallkunde, FB 11 Material- und Geowissenschaften, Technische Universität Darmstadt, D-64287 Darmstadt, Germany
P.J. Warren
Affiliation:
Department of Materials, Oxford University, Oxford, OX1 3PH Oxford, United Kingdom
B. Cantor
Affiliation:
Vice-Chancellor's Office, University of York, Heslington, YO10 5DD York, United Kingdom
J. Eckert
Affiliation:
FG Physikalische Metallkunde, FB 11 Material- und Geowissenschaften, Technische Universität Darmstadt, D-64287 Darmstadt, Germany
*
a) Address all correspondence to this author. e-mail: k.b.kim@phm.tu-darmstadt.de
Get access

Abstract

In this paper, details are given for the structural evolution of (Ti33Zr33Hf33)70(Ni50Cu50)20Al10, (Ti25Zr25Hf25Nb25)70(Ni50Cu50)20Al10, and (Ti33Zr33Hf33)70(Ni33Cu33Ag33)20Al10 amorphous alloys, part of wider program of alloy development by equiatomic substitution. All three alloys initially crystallize by forming a nanoscale icosahedral phase. However, at higher temperatures, their decomposition sequences differ significantly. The nanoscale icosahedral phase in the (Ti33Zr33Hf33)70(Ni50Cu50)20Al10 alloy decomposes into a mixture of Zr2Cu-type and icosahedral phases. This icosahedral phase still exists after heating up to 970 K, indicating a high thermal stability of this phase. The nanoscale icosahedral phase in the (Ti33Zr33Hf33)70(Ni33Cu33Ag33)20Al10 alloy also transforms into a mixture of Zr2Cu-type and icosahedral phase during the second exothermic reaction but then transforms into a mixture of Zr2Cu-type and Ti2Ni-type phases. The nanoscale icosahedral phase in the (Ti25Zr25Hf25Nb25)70(Ni50Cu50)20Al10 alloy decomposes into a mixture of Ti2Ni-type and MgZn2-type phases during the second exothermic reaction. It is concluded that the formation of the Zr2Cu-type phase retards the decomposition of the nanoscale icosahedral phase, which increases the thermal stability. In contrast, formation of Ti2Ni-type and MgZn2-type phases accelerates the decomposition of the nanoscale icosahedral phase, which decreases its thermal stability.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Inoue, A., Zhang, T., Saida, J., Matsushita, M., Chen, M.W., Sakurai, T.: Formation of icosahedral quasicrystalline phase in Zr–Al–Ni–Cu–M (M=Ag, Pd, Au or Pt) systems. Mater. Trans. JIM 40, 1181 (1999).CrossRefGoogle Scholar
2.Inoue, A., Saida, J., Matsushita, M., Sakurai, T.: Formation of an icosahedral quasicrystalline phase in Zr65Al7.5Ni10M17.5 (M = Pd, Au or Pt) alloys. Mater. Trans. JIM 41, 362 (2000).CrossRefGoogle Scholar
3.Inoue, A., Zhang, T., Chen, M.W., Sakurai, T., Saida, J., Matsushita, M.: Ductile quasicrystalline alloys. Appl. Phys. Lett. 76, 967 (2000).CrossRefGoogle Scholar
4.Saida, J., Matsushita, M., Li, C., Inoue, A.: Formation of icosahedral quasicrystalline phase in Zr70Ni10M20(M = Pd, Au, Pt) ternary metallic glasses. Appl. Phys. Lett. 76, 3558 (2000).CrossRefGoogle Scholar
5.Xing, L.Q., Eckert, J., Löser, W., Schultz, L.: High-strength materials produced by precipitation of icosahedral quasicrystals in bulk Zr–Ti–Cu–Ni–Al amorphous alloys. Apply. Phys. Lett. 74, 664 (1999).CrossRefGoogle Scholar
6.Scudino, S., Kühn, U., Schultz, L., Breitzke, H., Lüders, K., Eckert, J.: Formation of quasicrystals in ball-milled amorphous Zr–Ti–Nb–Cu–Ni–Al alloys with different Nb content. J. Mater. Sci. 39, 5483 (2004).CrossRefGoogle Scholar
7.Saida, J., Matsushita, M., Inoue, A.: Precipitation of an icosahedral quasicrystal phase in Zr70Pd20Ni10 amorphous alloy. Mater. Trans. JIM 41, 543 (2000).CrossRefGoogle Scholar
8.Cantor, B., Kim, K.B., Warren, P.J.: Novel multicomponent amorphous alloys. Mater. Sci. Forum 386–388, 27 (2002).CrossRefGoogle Scholar
9.Kim, K.B., Warren, P.J., Cantor, B.: Metallic glass formation in multicomponent (Ti,Zr,Hf,Nb)–(Ni,Cu,Ag)–Al alloys. J. Non-Cryst. Solids 317, 17 (2003).CrossRefGoogle Scholar
10.Kim, K.B., Warren, P.J., Cantor, B.: Formation of metallic glasses in novel (Ti33Zr33Hf33)100− xy (Ni50Cu50)x Aly alloys. Mater. Trans. JIM 44, 411 (2003).CrossRefGoogle Scholar
11.Kim, K.B., Zhang, Y., Warren, P.J., Cantor, B.: Crystallisation behaviour in a new multicomponent Ti16.6Zr16.6Hf16.6Ni20Cu20Al10 metallic glass developed by the equiatomic substitution technique. Philos. Mag. 83, 2371 (2003).CrossRefGoogle Scholar
12.Zhang, L.C., Xu, J.: Glass-forming ability of melt-spun multicomponent (Ti, Zr, Hf)–(Cu, Ni, Co)–Al alloys with equiatomic substitution. J. Non-Cryst. Solids 347, 166 (2004).CrossRefGoogle Scholar
13.Zhang, L.C., Shen, Z.Q., Xu, J.: Glass formation in a (Ti,Zr,Hf)– (Cu,Ni,Ag)–Al high-order alloy system by mechanical alloying. J. Mater. Res. 18, 2141 (2003).CrossRefGoogle Scholar
14.Kim, K.B., Warren, P.J., Cantor, B.: Glass forming ability and crystallization behaviour of new multicomponent (Ti33Zr33Hf33)60(Ni50Cu50)20Al20 alloy developed by equiatomic substitution. J. Metastable Nanocryst. Mater. 15–16, 143 (2003).Google Scholar
15.Kim, K.B., Warren, P.J., Cantor, B.: Glass forming ability of novel multicomponent (Ti33Zr33Hf33)–(Ni50Cu50)–Al alloys developed by equiatomic substitution. Mater. Sci. Eng. A 375–377, 317 (2004).CrossRefGoogle Scholar
16.Kim, Y.C., Park, J.M., Lee, J.K., Kim, W.T., Kim, D.H.: Precipitation of stable icosahedral phase in Ti-based amorphous alloys. Mater. Trans. JIM 44, 1978 (2003).CrossRefGoogle Scholar
17.Bancel, P.A., Heiney, P.A.: Icosahedral aluminum-transition-metal alloys. Phys. Rev. B 33, 7917 (1986).CrossRefGoogle ScholarPubMed
18.Xing, L.Q., Shen, Y.T., Kelton, K.F.: Precipitation of an icosahedrally symmetric ordered phase in Zr–Ti–Cu–Ni–Al metallic glasses. Appl. Phys. Lett. 81, 3371 (2002).CrossRefGoogle Scholar
19.Kelton, K.F.: Ti/Zr/Hf-based quasicrystals. Mater. Sci. Eng. A 375–377, 31 (2004).CrossRefGoogle Scholar
20.Chen, M.W., Zhang, T., Inoue, A., Sakai, A., Sakurai, T.: Quasicrystals in a partially devitrified Zr65Al7.5Ni10Cu12.5Ag5 bulk metallic glass. Appl. Phys. Lett. 75, 1697 (1999).CrossRefGoogle Scholar
21.Lee, J.K., Choi, G., Kim, D.H., Kim, W.T.: Formation of icosahedral phase from amorphous Zr65Al7.5Cu12.5Ni10Ag5 alloys. Appl. Phys. Lett. 77, 978 (2000).CrossRefGoogle Scholar
22.Turnbull, D.: Under what conditions can a glass be formed. Contemp. Phys. 10, 473 (1969).CrossRefGoogle Scholar
23.Lu, Z.P., Liu, C.T.: A new glass-forming ability criterion for bulk metallic glasses. Acta Mater. 50, 3501 (2002).CrossRefGoogle Scholar
24.Kim, W.J., Kelton, K.F.: Icosahedral-phase formation and stability in Ti–Zr–Co alloys. Philos. Mag. Lett. 74, 439 (1996).CrossRefGoogle Scholar
25.Majzoub, E.H., Hennig, R.G., Kelton, K.F.: Rietveld refinement and ab initio calculations of a C14-like Laves phase in Ti–Zr–Ni. Philos. Mag. Lett. 83, 65 (2003).CrossRefGoogle Scholar