Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T21:54:04.723Z Has data issue: false hasContentIssue false

Enhanced field emission from nitrogen-doped amorphous diamond

Published online by Cambridge University Press:  29 June 2016

Ming-Chi Kan
Affiliation:
Department of Materials Science and Engineering, National Cheng-Kung University, Tainan 701, Taiwan, Republic of China
Jow-Lay Huang*
Affiliation:
Department of Materials Science and Engineering, National Cheng-Kung University, Tainan 701, Taiwan, Republic of China
James C. Sung
Affiliation:
Kinik Company 64, Chung San Road, Ying-Kuo, Taipei-Hsien 239, Taiwan, Republic of China, and, National Taipei University of Technology, Taipei, Taiwan 106, Republic of China
Kuei-Hsien Chen
Affiliation:
Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan 106, Republic of China
Ding-Fwu Lii
Affiliation:
Department of Electrical Engineering, Cheng Shiu Institute of Technology, Kaohsiung County, Taiwan 833, Republic of China
Get access

Abstract

Undoped and nitrogen-doped amorphous diamond were deposited on n-type Si(100) substrate by a cathodic arc process. By varying nitrogen partial pressure of the gas mixture in the range of 0 to 55.6%, up to 23 at.% of nitrogen was incorporated in amorphous diamond. The electron spectroscopy for chemical analysis, Raman, and atomic force microscopy measurements indicated that most nitrogen atoms replaced carbon atoms in the amorphous structure. The electron concentration, mobility, and its resistivity were determined by the measurement of Hall effect. With the increasing of nitrogen content, the resistivity curve is U-shaped with a local minimum. The electron emission current in vacuum was characterized based on the diode design. It was found that the electron emission was highly reproducible. This is in contrast to the high variability observed for carbon nanotubes. The lowest resistivity coating had the lowest “turn-on” electrical field of 0.7 V/μxm at the current density of 10 μA/cm2.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Amaratunga, G.A.J., Baxendale, M., Rupesinghe, N., Alexandrou, I., Chhowalla, M., Munindradasa, T.B.A., Kiley, C.J., Zhang, L., and Sakai, T., New Diamond and Frontier Carbon Technology 9, 31 (1999).Google Scholar
2.Burden, A.P., Int. Mater. Rev. 46, 213 (2001).CrossRefGoogle Scholar
3.Kang, W.P., Fisher, T., and Davidson, J.L., New Diamond and Frontier Carbon Technology 11, 129 (2001).Google Scholar
4.Litovchenko, V.G., Evtukh, A.A., Marchenko, R.I., Klyui, N.I., and Semenovich, V.A., Appl. Surf. Sci. 111, 213 (1997).CrossRefGoogle Scholar
5.Llie, A., Ferrari, A.C., Yangi, T., and Robertson, J., Appl. Phys. Lett. 76, 2627 (2000).Google Scholar
6.Chen, K.H., Wu, J.J., Chen, L.C., Wen, C.Y., Kichambare, P.D., Tarntair, F.G., Kuo, P.F., Chang, S.W., and Chen, Y.F., Diamond Rel. Mater. 9, 1249 (2000).CrossRefGoogle Scholar
7.Zhu, W., Bower, C., Kochanski, G.P., and Jin, S., Diamond Relat. Mater. 10, 1709 (2001).CrossRefGoogle Scholar
8.Chen, Y.H., Hu, C.T., and Lin, I.N., J. Appl. Phys. 84, 3890 (1998).CrossRefGoogle Scholar
9.Tarntair, F.G., Chen, L.C., Wei, S.L., Hong, W.K., Chen, K.H., and Chen, H.C., J. Vac. Sci. Technol. B 18, 1207 (2000).CrossRefGoogle Scholar
10.Gröning, O., Küttel, O.M., Gröning, P., and Schlapbach, L., Appl. Surf. Sci. 111, 135 (1997).CrossRefGoogle Scholar
11.Huq, S.E., Prewett, P.D., She, J.C., Deng, S.Z., and Xu, N.S., Mater. Sci. Eng. B 74, 184 (2000).CrossRefGoogle Scholar
12.Zhu, W., Kochanski, G.P., Jin, S., Science 282, 1471 (1998).CrossRefGoogle Scholar
13.Okano, K., Koizumi, S., Silva, S.R.P., and Amaratunga, G.A.J., Nature 381, 140 (1996).CrossRefGoogle Scholar
14.Veerasamy, V.S., Yuan, J., Amaratunga, G.A.J., Milne, W.I., Gilkes, K.W.R., Weiler, M., and Brown, L.M., Phys. Rev. B 48, 17954 (1993).CrossRefGoogle Scholar
15.Robertson, J. and Davis, C.A., Diamond Relat. Mater. 4, 441 (2001).CrossRefGoogle Scholar
16.Xanthakis, J.P. and Modinors, A., Diamond Relat. Mater. 9, 798 (1999).CrossRefGoogle Scholar
17.Hong, Y.K., Kim, J.J., Kim, J.S., Jeon, I.C., Park, C., and Kim, J.K., Appl. Surf. Sci. 146, 269 (1999).CrossRefGoogle Scholar
18.Hong, D. and Aslam, M., J. Vac. Sci. Technol. B 12, 764 (1994).CrossRefGoogle Scholar
19.Wen, F.Y., Chen, L.C., Wu, J.J., Chen, K.H., Kuo, P.F., Chang, C.W., Chen, Y.F., Hong, W.K., and Chen, H.C., Appl. Phys. Lett. 76, 2630 (2000).CrossRefGoogle Scholar
20.Zhirnov, V.V., Rinne, C.L., Wojak, G.J., Sanwald, R.C., and Hren, J.J., J. Vac. Sci. Technol. B 19, 87 (2001).CrossRefGoogle Scholar
21.Angleraud, B., Mubumbila, N., Tessier, P.Y., Fernandez, V., and Turban, G., Diamond Relat. Mater. 10, 1142 (2001).CrossRefGoogle Scholar
22.Jackson, S.T. and Nuzzo, R.G., Appl. Surf. Sci. 90, 195 (1995).CrossRefGoogle Scholar
23.Petrov, P., Dimitrov, D.B., Papadimitrious, D., Beshkov, G., Krastev, V., and Georgiev, Ch., Appl. Surf. Sci. 151, 233 (1999).CrossRefGoogle Scholar
24.Liu, E., Shi, X., Tay, B.K., Cheah, L.K., Tan, H.S., Shi, J.R., and Sun, Z., J. Appl. Phys. 86, 6078 (1999).CrossRefGoogle Scholar
25.Chhowalla, M., Ferrari, A.C., Robertson, J., and Amaratunga, G.A.J., Appl. Phys. Lett. 76, 1419 (2000).CrossRefGoogle Scholar
26.Dean, K.A. and Chalamala, B.R., Appl. Phys. Lett. 76, 375 (2000).CrossRefGoogle Scholar
27.Lim, S.H., Kim, H.S., Lee, C.H., Pietruszko, S.T., and Jang, J., J. Non-Cryst. Solids 299-302, 864 (2002).CrossRefGoogle Scholar