Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T00:31:21.784Z Has data issue: false hasContentIssue false

Enhanced ferroelectricity and ferromagnetism in La1−xBixCrO3 by Bi3+ substitution

Published online by Cambridge University Press:  31 January 2011

H-Y. Guo
Affiliation:
Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
J.I.L. Chen
Affiliation:
Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
Z-G. Ye*
Affiliation:
Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
A.S. Arrott
Affiliation:
Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
*
a)Address all correspondence to this author. e-mail: zye@sfu.ca
Get access

Abstract

The ferroelectric and magnetic properties of the perovskite solid solution, (1 − x)LaCrO3–xBiCrO3, have been investigated. While pure LaCrO3 does not show ferroelectric hysteresis even at 77 K, the solid solution of La1−xBixCrO3 with x = 0.1, 0.2, 0.3, and 0.35 displays ferroelectric hysteresis, with the remanent polarization increasing with the increase of the Bi3+ content. Using a superconducting quantum interference device, the magnetization was measured versus temperature under field cooling (FC) and zero field cooling (ZFC) conditions. Magnetic hysteresis has been found in La1−xBixCrO3 (0.1 ⩽ x ⩽ 0.3) below the Néel temperature, TN. With the increase of Bi3+ content, TN decreases, while the magnetization below TN is enhanced. While the ferroelectric and magnetic properties could be due to different origins, the Bi substitution results in both ferroelectric and magnetic enhancements in the (1 − x)LaCrO3–xBiCrO3 solid solutions.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Geller, S.: Crystallographic studies of perovskite-like compounds. Acta Crystallogr. A 10, 243 1957CrossRefGoogle Scholar
2Sakai, N., Fjellvag, H.Hauback, B.C.: Structural, magnetic, and thermal properties of La1−tCatCrO3−δ. J. Solid State Chem. 121, 202 1996CrossRefGoogle Scholar
3Goodenough, J.B.Longo, J.M.: Magnetic and other properties of oxides and related compounds in Landolt–Bornstein, Group III, Vol. 4, Springer–Verlag New York 1970 126Google Scholar
4Nomura, S.: Magnetic and other properties of oxides and related compounds in Landolt–Bornstein, Group III, Vol. 12, Springer–Verlag New York 1978 368Google Scholar
5Hayashi, H., Watanabe, M., Ohuchida, M., Inaba, H., Hiei, Y., Yamamoto, T.Mori, M.: Thermal expansion of La1−xSrxCrO3. Solid State Ionics 144, 301 2001CrossRefGoogle Scholar
6Tezuka, K.Hinatsu, Y.: Magnetic and neutron diffraction study on perovskites La1−x SrxCrO3. J. Solid State Chem. 141, 404 1998CrossRefGoogle Scholar
7Chakraborty, K.R., Yusuf, S.M., Krishna, P.S.R., Ramanadham, M.Tyagi, A.K.: Low-temperature neutron diffraction study of La0.95Nd0.05CrO3. Pramana—J. Phys. 63, 251 2004CrossRefGoogle Scholar
8Vashook, V., Vasylechko, L., Zosel, J., Gruner, W., Ullmann, H.Guth, U.: Crystal structure and electrical conductivity of lanthanum–calcium chromites–titanates La1−xCaxCr1−yTiyO3−δ (x = 0–1, y = 0–1). J. Solid State Chem. 177, 3784 2004CrossRefGoogle Scholar
9Vernoux, P., Guillodo, M., Fouletier, J.Hammou, A.: Alternative anode material for gradual methane reforming in solid oxide fuel cells. Solid State Ionics 135, 425 2000CrossRefGoogle Scholar
10Meadowcroft, D.B.Wimmer, J.M.: Oxidation and vaporization process in lanthanum chromite. Am. Ceram. Soc. Bull. 58, 610 1979Google Scholar
11Mori, M.Sammes, N.M.: Sintering and thermal expansion characterization of Al-doped and Co-doped lanthanum strontium chromites synthesized by the Pechini method. Solid State Ionics 146, 301 2002CrossRefGoogle Scholar
12Chen, J.I.L., Kumar, M. MaheshYe, Z-G.: A new ferroelectric solid solution system of LaCrO3–BiCrO3. J. Solid State Chem. 177, 1501 2004CrossRefGoogle Scholar
13Chen, J.I.L.Ye, Z-G.: Ferroelectricity in La1−xBixCrO3 solid solutions. Ferroelectrics 301, 175 2004CrossRefGoogle Scholar
14Hill, N.A., Battig, P.Daul, C.: First principles search for multiferroism in BiCrO3. J. Phys. Chem. B 106, 3383 2002CrossRefGoogle Scholar
15Eerenstein, W., Mathur, N.D.Scott, J.F.: Multiferroic and magnetoelectric materials. Nature 442, 759 2006CrossRefGoogle ScholarPubMed
16Singh, D., Ghita, M., Fornari, M.Halilov, S.: Role of A-site and B-site ions in perovskite ferroelectricity. Ferroelectrics 338, 1489 2006CrossRefGoogle Scholar
17Jin, F.X., Endo, T., Takizawa, H.Shimada, M.: Effects of divalent-cation substitution on sinterability and electrical properties of LaCrO3 ceramics. J. Solid State Chem. 113, 138 1994CrossRefGoogle Scholar
18Jaffe, J.E., Droubay, T.C.Chambers, S.A.: Oxygen vacancies and ferromagnetism in CoxTi1−xO2−x−y. J. Appl. Phys. 97, 073908 2005CrossRefGoogle Scholar
19Niitaka, S., Azuma, M., Takano, M., Nishibori, E., Takata, M.Sakata, M.: Crystal structure and dielectric and magnetic properties of BiCrO3 as a ferroelectromagnet. Solid State Ionics 172, 557 2004CrossRefGoogle Scholar
20Ederer, C.Spaldin, N.A.: Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Phys. Rev. B 71, 060401 2005CrossRefGoogle Scholar
21Moriya, T.: Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91 1960CrossRefGoogle Scholar
22Gosula, V., Tkachuk, A., Chung, K.Chen, H.: X-ray scattering study of the transition dynamics in relaxor ferroelectric Pb(Mg1/3Nb2/3)O3. J. Phys. Chem. 61, 221 2000Google Scholar