Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-25T22:36:17.912Z Has data issue: false hasContentIssue false

Energy principle of indentation contact: The application to sapphire

Published online by Cambridge University Press:  31 January 2011

Roman Nowak
Affiliation:
Department of Materials Science, Toyohashi University of Technology, Tempaku-cho, Toyohashi 441, Japan
Mototsugu Sakai
Affiliation:
Department of Materials Science, Toyohashi University of Technology, Tempaku-cho, Toyohashi 441, Japan
Get access

Abstract

The recently developed energy principle of indentation mechanics was applied to the continuous indentation test performed on pure sapphire. Three crystallographic planes, M = (10$\overline 1$0), A = (1$\overline 1$10), and C = (0001), have been indented by a symmetrical triangular pyramid (Berkovich). The distinct anisotropic behavior of the indented crystal has been observed for the maximum indentation loads of 1.961 N, 0.686 N, and 0.392 N. The indentation hysteresis loop energy and the related “true hardness parameter” have been determined for various crystallographic orientations, as well as for two different orientations of the indenter. The observed effects have been discussed in terms of the energy principle of indentation with crystallographic considerations. The effective resolved shear stresses for the slip and twinning systems were calculated and applied to the anisotropic indentation behavior. It was concluded that the energy principle is highly recommended for analyzing the data of continuous indentation tests.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Armstrong, R. W. and Robinson, W. H.N. Z. J. Sci. 17, 429 (1974).Google Scholar
2Cousins, W. J.Armstrong, R. W. and Robinson, W. H.J. Mater. Sci. 10, 1655 (1975).Google Scholar
3Newey, D.Wilkins, M.A. and Pollock, H. M.J. Phys. E: Sci. Instrum. 15, 119 (1982).CrossRefGoogle Scholar
4Pethica, J. B.Hutchings, R. and Oliver, W. C.Philos. Mag. A48, 593 (1983).Google Scholar
5Cook, R.F. and Pharr, G.M.J. Am. Ceram. Soc. 73, 787 (1990).Google Scholar
6Tandon, R.Green, D. J. and Cook, R. F.J. Am. Ceram. Soc. 73, 2619 (1990).Google Scholar
7LaFontaine, W. R.Paszkiet, C. A.Korhonen, M. A. and Li, Che-Yu, J. Mater. Res. 6, 2084 (1991).CrossRefGoogle Scholar
8Stone, D.LaFontaine, W. R.Alexopoulos, P.Wu, T.W. and Li, C.Y., J. Mater. Res. 3, 141 (1988).CrossRefGoogle Scholar
9Lucas, B. N.Oliver, W. C.Williams, R. K.Brynestad, J. and O'Hern, M. E., J. Mater. Res. 6, 2519 (1991).CrossRefGoogle Scholar
10Pharr, G. M.Oliver, W. C.Cook, R. F.Kirchner, P. D.Kroll, M. C.Dinger, T. R. and Clarke, D. R.J. Mater. Res. 7, 961 (1992).Google Scholar
11Page, T.F.Oliver, W. C. and McHargue, C.J.J. Mater. Res. 7, 450 (1992).CrossRefGoogle Scholar
12O'Hern, M.E., McHargue, C.J.White, C.W. and Farlow, G.C.Nucl. Instrum. Methods B46, 171 (1990).Google Scholar
13Nowak, R.Ueno, K. and Kinoshita, K. in Fracture Mechanics of Ceramics, edited by Bradt, R. C.Hasselman, D. P. H.Mung, D.Sakai, M. and Shevchenko, V. Ya. (Plenum Press, New York, 1992), Vol. 10, pp. 155174.Google Scholar
14Doerner, M. F. and Nix, W. D.J. Mater. Res. 1, 601 (1986).Google Scholar
15Pharr, G.M.Oliver, W.C. and Brotzen, F.R.J. Mater. Res. 7, 613 (1992).Google Scholar
16Shih, C.W.Yang, M. and J.Li, C.M.J. Mater. Res. 6, 2623 (1991).CrossRefGoogle Scholar
17Oliver, W.C. and Pharr, G.M.J. Mater. Res. 7, 1564 (1992).Google Scholar
18Bhattacharya, A. K. and Nix, W. D.Int. J. Solids Structures 24, 881 (1988).Google Scholar
19Laursen, T.A. and Simo, J.C.J. Mater. Res. 7, 618 (1992).CrossRefGoogle Scholar
20Hertz, H. R.Miscellaneous Papers (Macmillan, London, 1986), Chaps. 5 and 6.Google Scholar
21Johnson, K. L.Contact Mechanics (Cambridge University Press, Cambridge, 1985).CrossRefGoogle Scholar
22Hirsch, P. B.Pirouz, P.Roberts, S. G. and Warren, P. D.Philos. Mag. 52B, 759 (1985).Google Scholar
23Nadai, A.Plasticity (McGraw-Hill, New York, 1931), p. 247.Google Scholar
24Sneddon, I.N.J. Eng. Sci. 3, 47 (1965).CrossRefGoogle Scholar
>25. (a) Sakai, M.>Acta Metall. Mater., in press; (b) M. Sakai and R. Nowak Ceramics–Adding the Value, edited by M. J. Bannister Aust. Ceram. Soc. 2, 922-931 (1992).25.+(a)+Sakai,+M.>Acta+Metall.+Mater.,+in+press;+(b)+M.+Sakai+and+R.+Nowak+Ceramics–Adding+the+Value,+edited+by+M.+J.+Bannister+Aust.+Ceram.+Soc.+2,+922-931+(1992).>Google Scholar
26Pharr, G. M. and Oliver, W.C.J. Mater. Res. 4, 94 (1989).CrossRefGoogle Scholar
27Joslin, D. L. and Oliver, W. C.J. Mater. Res. 5, 123 (1990).CrossRefGoogle Scholar
28Pharr, G. M. and Cook, R. F.J. Mater. Res. 5, 847 (1990).Google Scholar
29Tanaka, K.Koguchi, H. and Mura, T.Int. J. Eng. Sci. 27, 11 (1989).Google Scholar
30Kronberg, M. L.Acta Metall. 5, 507 (1957).CrossRefGoogle Scholar
31Brethau, T.Castaing, J.Rabier, J. and Veyssiere, P.Adv. Phys. 28, 829 (1979).Google Scholar
32Bradt, R. C. and Scott, W. D. in Alumina Chemicals: Science and Technology Handbook, edited by Hart, LeRoy D. (The American Ceramics Society Inc., Westerville, OH, 1990), pp. 2339.Google Scholar
33Nowak, R.Ueno, K. and Kinoshita, K.Proc. 6th Int. Conf. Mechan. Behav. Mater., edited by Jono, M. and Inoue, T. (Perga-mon Press, Oxford, 1991), pp. 551556.Google Scholar
34Pharr, G. M. and Oliver, W. C.Mater. Res. Bull. XVII 28 (1992).Google Scholar
35Hockey, B.J.J. Am. Ceram. Soc. 54, 223 (1971).Google Scholar
36Kollenberg, W.J. Mater. Sci. 23, 3321 (1988).Google Scholar
37Kaji, M. and Bradt, R. C. in press.Google Scholar
38Iwasa, M. and Bradt, R. C.Adv. Ceram. 10, 767 (1985).Google Scholar
39Nowak, R. and Sakai, M. unpublished work.Google Scholar
40Daniels, F.W. and Dunn, C. G.Trans. Am. Soc. Met. 41, 419 (1949).Google Scholar
41Lagerlof, K. P. D.Mitchell, T.E. and Heuer, A.H. in Interfaces and Contacts, edited by Ludeke, R. and Rose, K. (Mater. Res. Soc. Symp. Proc. 18, Elsevier Science Publishing, New York, 1984), p. 49.Google Scholar
42Nowak, R.Acta Crystallogr. A43, C-96 (1987).Google Scholar
43Pospiech, J. and Gryziecki, J.Arch. Hutn. XV 267 (1970).Google Scholar
44Brookes, C.A.O'Neill, J.B., and Redfern, A.W.Proc. R. Soc. London A322, 73 (1971).Google Scholar