Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-25T22:50:29.120Z Has data issue: false hasContentIssue false

Electro-optic potassium-tantalate-niobate films prepared by pulsed laser deposition from segmented pellets

Published online by Cambridge University Press:  03 March 2011

S. Yilmaz
Affiliation:
Bell Communications Research, Red Bank, New Jersey 07701-7020
R. Gerhard-Multhaupt
Affiliation:
Heinrich-Hertz-Institut für Nachrichtentechnik, Berlin GmbH, Einsteinufer 37, D-1000 Berlin 10, Germany
W.A. Bonner
Affiliation:
Bell Communications Research, Red Bank, New Jersey 07701-7020
D.M. Hwang
Affiliation:
Bell Communications Research, Red Bank, New Jersey 07701-7020
A. Inam
Affiliation:
Bell Communications Research, Red Bank, New Jersey 07701-7020
J.A. Martinez
Affiliation:
Bell Communications Research, Red Bank, New Jersey 07701-7020
T.S. Ravi
Affiliation:
Bell Communications Research, Red Bank, New Jersey 07701-7020
T. Sands
Affiliation:
Bell Communications Research, Red Bank, New Jersey 07701-7020
B.J. Wilkens
Affiliation:
Bell Communications Research, Red Bank, New Jersey 07701-7020
X.D. Wu
Affiliation:
Bell Communications Research, Red Bank, New Jersey 07701-7020
T. Venkatesan
Affiliation:
Bell Communications Research, Red Bank, New Jersey 07701-7020
Get access

Abstract

Thin films of potassium tantalate niobate (KTN) were prepared by means of pulsed excimer-laser deposition and investigated with a number of analytical techniques, including electrical and electro-optical measurements. For applications in longitudinal electro-optic modulators, a transparent electrode is required between substrate and electro-optic layers. Suitable electrode materials, which at the same time permit epitaxial growth of KTN, were identified and prepared. The resulting layered samples were not only of good epitaxial and optical quality, but also exhibited the expected maximum of the longitudinal electro-optic effect at temperatures between the phase transitions from cubic to tetragonal and from tetragonal to orthorhombic. However, the maximum achievable electro-optic phase shift was found to be limited to roughly τ/100 for KTN films in the thickness range around 1 μm. Therefore, much thicker films are probably necessary for most practical applications, which requires significant improvements in the long-term stability and homogeneity of the deposition process.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Chen, F. S., Geusic, J. E., Kurtz, S. K., Skinner, J. G., and Wemple, S. H., J. Appl. Phys. 37, 388 (1966).CrossRefGoogle Scholar
2van Raalte, J. A., J. Opt. Soc. Am. 57, 671 (1967).CrossRefGoogle Scholar
3Haas, W. and Johannes, R., Appl. Opt. 6, 2007 (1967).CrossRefGoogle Scholar
4Fox, A. J. and Whipps, P. W., Electron. Lett. 7, 139 (1971).CrossRefGoogle Scholar
5Gutmann, R., Hulliger, J., Hauert, R., and Moser, E. M., J. Appl. Phys. 70, 2648 (1991).CrossRefGoogle Scholar
6Triebwasser, S., Phys. Rev. 114, 63 (1959).CrossRefGoogle Scholar
7Yilmaz, S. and Gerhard-Multhaupt, R., Ferroelectrics 94, 103 (1989).CrossRefGoogle Scholar
8Reisman, A., Triebwasser, S., and Holtzberg, F., J. Am. Chem.Soc. 77, 4228 (1955).CrossRefGoogle Scholar
9Scheel, H. J. and Sommerauer, J., J. Cryst. Growth 62, 291 (1983).CrossRefGoogle Scholar
10Goeking, K. W., Pandey, R. K., Squattrito, P. J., Clearfield, A., and Beratan, H. R., Ferroelectrics 92, 89 (1989).CrossRefGoogle Scholar
11Bohac, P. and Kaufmann, H., Electron. Lett. 22, 861 (1986).CrossRefGoogle Scholar
12Fluck, D., Gutmann, R., Günter, P., and Irmscher, R., J. Appl. Phys. 70, 5127 (1991).CrossRefGoogle Scholar
13Feuersanger, A. E., in Thin Film Dielectrics, edited by Vratny, F. (The Electrochemical Society, New York, 1969), pp. 209236.Google Scholar
14Davis, G. M. and Gower, M. C., Appl. Phys. Lett. 55, 112 (1989).CrossRefGoogle Scholar
15Dijkkamp, D., Venkatesan, T., Wu, X. D., Shaheen, S. A., Jisrawi, N., Min-Lee, Y. H., McLean, W. L., and Croft, M., Appl. Phys. Lett. 51, 619 (1987).CrossRefGoogle Scholar
16Venkatesan, T., Solid State Technol. 30, 39 (1987).Google Scholar
17Venkatesan, T., Wu, X. D., Inam, A., and Wachtman, J. B., Appl. Phys. Lett. 52, 1193 (1988).CrossRefGoogle Scholar
18Venkatesan, T., Chang, C. C., Dijkkamp, D., Ogale, S. B., Chase, E. W., Farrow, L. A., Hwang, D. M., Miceli, P. F., Schwarz, S. A., Terascon, J. M., Wu, X. D., and Inam, A., J. Appl. Phys. 63, 4591 (1988).CrossRefGoogle Scholar
19Venkatesan, T., Wu, X. D., Inam, A., Jeon, Y., Croft, M., Chase, E. W., Chang, C. C., Wachtman, J. B., Odom, R. W., Radicati di Brozolo, F., and Magee, C. A., Appl. Phys. Lett. 53, 1431 (1988).CrossRefGoogle Scholar
20Dutta, B., Wu, X. D., Inam, A., and Venkatesan, T., Solid State Technol. 32, 106 (1989).CrossRefGoogle Scholar
21Kwok, H. S., Mattocks, P., Shi, L., Witanachchi, S., Ying, Q. Y., Zheng, J. P., and Shaw, D. T., Appl. Phys. Lett. 52, 1825 (1988).CrossRefGoogle Scholar
22Ogale, S. B., Koinkar, V. N., Joshi, S., Godbole, V. P., Date, S. K., Mitra, A., Venkatesan, T., and Wu, X. D., Appl. Phys. Lett. 53, 1320 (1988).CrossRefGoogle Scholar
23Wu, E. T., Kuang, A. X., and MacKenzie, J. D., in Proceedings of the 6th International Symposium on Applications of Ferroelectrics (IEEE Service Center, Piscataway, NJ, 1986), pp. 391393.Google Scholar
24Yilmaz, S., Venkatesan, T., and Gerhard-Multhaupt, R., Appl. Phys. Lett. 58, 2479 (1991).CrossRefGoogle Scholar