Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T14:28:59.344Z Has data issue: false hasContentIssue false

Electronic transport and phonon properties of maximally disordered alloys: From binaries to high-entropy alloys

Published online by Cambridge University Press:  21 September 2018

Sai Mu*
Affiliation:
Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
Zongrui Pei
Affiliation:
Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
Xianglin Liu
Affiliation:
Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
George M. Stocks*
Affiliation:
Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
*
a)Address all correspondence to these authors. e-mail: sai.mu1986321@gmail.com
Get access

Abstract

Recent discoveries of multicomponent concentrated solid-solution alloys hold promise for enhanced properties—such as enhanced mechanical properties, radiation tolerance, high temperature strength, corrosion resistance and some novel functional properties, provide a new strategy for alloy design using extreme disorder. Yet, deep understanding of these intriguing properties is complicated by the very effects of disorder that make them interesting. All the desirable properties of these alloys ultimately originate from the disorder-induced properties of underlying electronic structure, lattice dynamics, and thermodynamics. Therefore, understanding the disorder-induced fundamental physical properties is prerequisite for the science-based design of this class of alloys for practical applications. Here, we elucidate the role of extreme (maximal) substitutional disorder plays in the fundamental physics of disordered alloys and review the recently developed theoretical methodologies in modeling the basic physical properties, particularly electronic structure, magnetism, electrical transport, and lattice vibrations in multicomponent concentrated solid-solution alloys.

Type
Invited Review
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

References

REFERENCES

Yeh, J-W., Chen, S-K., Lin, S-J., Gan, J-Y., Chin, T-S., Shun, T-T., Tsau, C-H., and Chang, S-Y.: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).CrossRefGoogle Scholar
Cantor, B., Chang, I.T.H., Knight, P., and Vincent, A.J.B.: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng., A 375, 213 (2004).CrossRefGoogle Scholar
Tsai, M-H. and Yeh, J-W.: High-entropy alloys: A critical review. Mater. Res. Lett. 2, 107 (2014).CrossRefGoogle Scholar
Zhang, Y., Zuo, T.T., Tang, Z., Gao, M.C., Dahmen, K.A., Liaw, P.K., and Lu, Z.P.: Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1 (2014).CrossRefGoogle Scholar
Diao, H.Y., Feng, R., Dahmen, K.A., and Liaw, P.K.: Fundamental deformation behavior in high-entropy alloys: An overview. Curr. Opin. Solid State Mater. Sci. 21, 252 (2017).CrossRefGoogle Scholar
Otto, F., Dlouhý, A., Somsen, C., Bei, H., Eggeler, G., and George, E.P.: The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 61, 5743 (2013).CrossRefGoogle Scholar
Wu, Z., Bei, H., Otto, F., Pharr, G.M., and George, E.P.: Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys. Intermetallics 46, 131 (2014).CrossRefGoogle Scholar
Jin, K., Sales, B.C., Stocks, G.M., Samolyuk, G.D., Daene, M., Weber, W.J., Zhang, Y., and Bei, H.: Tailoring the physical properties of Ni-based single-phase equiatomic alloys by modifying the chemical complexity. Sci. Rep. 6, 20159 (2016).CrossRefGoogle ScholarPubMed
Sales, B.C., Jin, K., Bei, H., Stocks, G.M., Samolyuk, G.D., May, A.F., and McGuire, M.A.: Quantum critical behavior in a concentrated ternary solid solution. Sci. Rep. 6, 26179 (2016).CrossRefGoogle Scholar
Jin, K., Mu, S., An, K., Porter, W.D., Samolyuk, G.D., Stocks, G.M., and Bei, H.: Thermophysical properties of Ni-containing single-phase concentrated solid solution alloys. Mater. Des. 117, 185 (2017).CrossRefGoogle Scholar
Zhang, Y., Zuo, T., Cheng, Y., and Liaw, P.K.: High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability. Sci. Rep. 3, 1455 (2013).CrossRefGoogle ScholarPubMed
Schneeweiss, O., Friák, M., Dudová, M., Holec, D., Šob, M., Kriegner, D., Holý, V., Beran, P., George, E.P., Neugebauer, J., and Dlouhý, A.: Magnetic properties of the CrMnFeCoNi high-entropy alloy. Phys. Rev. B 96, 14437 (2017).CrossRefGoogle Scholar
Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E.H., George, E.P., and Ritchie, R.O.: A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153 (2014).CrossRefGoogle ScholarPubMed
Gludovatz, B., Hohenwarter, A., Thurston, K.V.S., Bei, H., Wu, Z., George, E.P., and Ritchie, R.O.: Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nat. Commun. 7, 10602 (2016).CrossRefGoogle ScholarPubMed
Zhang, Y., Stocks, G.M., Jin, K., Lu, C., Bei, H., Sales, B.C., Wang, L., Béland, L.K., Stoller, R.E., Samolyuk, G.D., Caro, M., Caro, A., and Weber, W.J.: Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys. Nat. Commun. 6, 8736 (2015).CrossRefGoogle ScholarPubMed
Lu, C., Niu, L., Chen, N., Jin, K., Yang, T., Xiu, P., Zhang, Y., Gao, F., Bei, H., Shi, S., He, M-R., Robertson, I.M., Weber, W.J., and Wang, L.: Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys. Nat. Commun. 7, 13564 (2016).CrossRefGoogle ScholarPubMed
Soven, P.: Coherent-potential model of substitutional disordered alloys. Phys. Rev. 156, 809 (1967).CrossRefGoogle Scholar
Zunger, A., Wei, S-H., Ferreira, L.G., and Bernard, J.E.: Special quasirandom structures. Phys. Rev. Lett. 65, 353 (1990).CrossRefGoogle ScholarPubMed
Van de Walle, A., Asta, M., and Ceder, G.: The alloy theoretic automated toolkit: A user guide. CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 26, 539 (2002).CrossRefGoogle Scholar
Lerch, D., Wieckhorst, O., Hart, G.L.W., Forcade, R.W., and Muller, S.: UNCLE: A code for constructing cluster expansions for arbitrary lattices with minimal user-input. Model. Simul. Mater. Sci. Eng. 17, 055003 (2009).CrossRefGoogle Scholar
Seko, A., Koyama, Y., and Tanaka, I.: Cluster expansion method for multicomponent systems based on optimal selection of structures for density-functional theory calculations. Phys. Rev. B 80, 165122 (2009).CrossRefGoogle Scholar
Sanchez, J.M., Ducastelle, F., and Gratias, D.: Generalized cluster description of multicomponent systems. Phys. A 128, 334 (1984).CrossRefGoogle Scholar
Wolverton, C. and De Fontaine, D.: Cluster expansions of alloy energetics in ternary intermetallics. Phys. Rev. B 49, 8627 (1994).CrossRefGoogle ScholarPubMed
Popescu, V. and Zunger, A.: Effective band structure of random alloys. Phys. Rev. Lett. 104, 236403 (2010).CrossRefGoogle ScholarPubMed
Ku, W., Berlijn, T., and Lee, C-C.: Unfolding first-principles band structures. Phys. Rev. Lett. 104, 216401 (2010).CrossRefGoogle ScholarPubMed
Berlijn, T., Lin, C.H., Garber, W., and Ku, W.: Do transition-metal substitutions dope carriers in iron-based superconductors? Phys. Rev. Lett. 108, 207003 (2012).CrossRefGoogle ScholarPubMed
Nordheim, L.: The electron theory of metals. Ann. Phys. 9, 607 (1931).CrossRefGoogle Scholar
Muto, T.: On the electronic structure of alloys. Sci. Pap. Inst. Phys. Chem. Res. 34, 377 (1938).Google Scholar
de Gironcoli, S., Giannozzi, P., and Baroni, S.: Structure and thermodynamics of SixGe1−x alloys from ab initio Monte Carlo simulations. Phys. Rev. Lett. 66, 2116 (1991).CrossRefGoogle ScholarPubMed
Pickett, W.E. and Singh, D.J.: Electronic structure and half-metallic transport in the La1−xCaxMnO3 system. Phys. Rev. B 53, 1146 (1996).CrossRefGoogle ScholarPubMed
Slavenburg, P.: TiFe1−xCox alloys and the influence of antistructural atoms. Phys. Rev. 55, 110 (1997).CrossRefGoogle Scholar
Bellaiche, L. and Vanderbilt, D.: Virtual crystal approximation revisited: Application to dielectric and piezoelectric properties of perovskites. Phys. Rev. B: Condens. Matter Mater. Phys. 61, 7877 (2000).CrossRefGoogle Scholar
Stocks, G.M., Temmerman, W.M., Szotek, Z., and Sterne, P.A.: Density functional theory total energies and equilibrium volumes of La2CuO4 and La1.5Sr0.5CuO4. Supercond. Sci. Technol. 1, 57 (1988).CrossRefGoogle Scholar
Gyorffy, B.L.: Coherent-potential approximation for a nonoverlapping-muffin-tin-potential model of random substitutional alloys. Phys. Rev. B 5, 2382 (1972).CrossRefGoogle Scholar
Korringa, J.: On the calculation of the energy of a Bloch wave in a metal. Physica 13, 392 (1947).CrossRefGoogle Scholar
Kohn, W. and Rostoker, N.: Solution of the Schrödinger equation in periodic lattices with an application to metallic lithium. Phys. Rev. 94, 1111 (1954).CrossRefGoogle Scholar
Faulkner, J.S. and Stocks, G.M.: Calculating properties with the coherent-potential approximation. Phys. Rev. B 21, 3222 (1980).CrossRefGoogle Scholar
Stocks, G.M., Temmerman, W.M., and Gyorffy, B.L.: Complete solution of the Korringa–Kohn–Rostoker coherent-potential-approximation equations: Cu–Ni alloys. Phys. Rev. Lett. 41, 339 (1978).CrossRefGoogle Scholar
Stocks, G.M. and Butler, W.H.: Mass and lifetime enhancement due to disorder on AgcPd1−c alloys. Phys. Rev. Lett. 48, 55 (1982).CrossRefGoogle Scholar
Ebert, H., Ködderitzsch, D., and Minár, J.: Calculating condensed matter properties using the KKR-Green’s function method—Recent developments and applications. Rep. Prog. Phys. 74, 096501 (2011).CrossRefGoogle Scholar
Ebert, H. et al.: The Munich SPR-KKR Package, version 7.7 (2017). Available at: http://olymp.cup.uni-muenchen.de/ak/ebert/SPRKKR.Google Scholar
Mu, S., Samolyuk, G., Wimmer, S., Troparevsky, M.C., Khan, S., Mankovsky, S., Ebert, H., and Stocks, G.M.: Electron scattering mechanisms in alloys possessing extreme disorder. (arXiv:1806.03785, under Review) (2018).Google Scholar
Pindor, A.J., Staunton, J., Stocks, G.M., and Winter, H.: Disordered local moment state of magnetic transition metals: A self-consistent KKR CPA calculation. J. Phys. F: Met. Phys. 13, 979 (1983).CrossRefGoogle Scholar
Gyorffy, B.L., Pindor, A.J., Staunton, J., Stocks, G.M., and Winter, H.: A first-principles theory of ferromagnetic phase transitions in metals. J. Phys. F: Met. Phys. 15, 1337 (1985).CrossRefGoogle Scholar
Staunton, J., Gyorffy, B.L., Pindor, A.J., Stocks, G.M., and Winter, H.: Electronic structure of metallic ferromagnets above the Curie temperature. J. Phys. F: Met. Phys. 15, 1387 (1985).CrossRefGoogle Scholar
Deák, A., Simon, E., Balogh, L., Szunyogh, L., Dos Santos Dias, M., and Staunton, J.B.: Metallic magnetism at finite temperatures studied by relativistic disordered moment description: Theory and applications. Phys. Rev. B: Condens. Matter Mater. Phys. 89, 224401 (2014).CrossRefGoogle Scholar
Belashchenko, K.D., Weerasinghe, J., Mu, S., and Pujari, B.S.: Spectral signatures of thermal spin disorder and excess Mn in half-metallic NiMnSb. Phys. Rev. B: Condens. Matter Mater. Phys. 91, 180408 (2015).CrossRefGoogle Scholar
Mankovsky, S., Polesya, S., Chadova, K., Ebert, H., Staunton, J.B., Gruenbaum, T., Schoen, M.A.W., Back, C.H., Chen, X.Z., and Song, C.: Temperature-dependent transport properties of FeRh. Phys. Rev. B 95, 155139 (2017).CrossRefGoogle Scholar
Ebert, H., Mankovsky, S., Chadova, K., Polesya, S., Minar, J., and Koedderitzsch, D.: Calculating linear-response functions for finite temperatures on the basis of the alloy analogy model. Phys. Rev. B 91, 165132 (2015).CrossRefGoogle Scholar
Pujari, B.S., Larson, P., Antropov, V.P., and Belashchenko, K.D.: Ab initio construction of magnetic phase diagrams in alloys: The case of Fe1−xMnxPt. Phys. Rev. Lett. 115, 057203 (2015).CrossRefGoogle Scholar
Staunton, J.B., Ostanin, S., Razee, S.S.A., Gyorffy, B.L., Szunyogh, L., Ginatempo, B., and Bruno, E.: Temperature dependent magnetic anisotropy in metallic magnets from an ab initio electronic structure theory: L10-ordered FePt. Phys. Rev. Lett. 93, 257204 (2004).CrossRefGoogle Scholar
Staunton, J., Szunyogh, L., Buruzs, A., Gyorffy, B., Ostanin, S., and Udvardi, L.: Temperature dependence of magnetic anisotropy: An ab initio approach. Phys. Rev. B 74, 1 (2006).CrossRefGoogle Scholar
Zhuravlev, I.A., Antropov, V.P., and Belashchenko, K.D.: Spin-fluctuation mechanism of anomalous temperature dependence of magnetocrystalline anisotropy in itinerant magnets. Phys. Rev. Lett. 115, 217201 (2015).CrossRefGoogle ScholarPubMed
Vitos, L.: Total-energy method based on the exact muffin-tin orbitals theory. Phys. Rev. B: Condens. Matter Mater. Phys. 64, 014107 (2001).CrossRefGoogle Scholar
Vitos, L., Abrikosov, I.A., and Johansson, B.: Anisotropic lattice distortions in random alloys from first-principles theory. Phys. Rev. Lett. 87, 156401 (2001).CrossRefGoogle ScholarPubMed
Ma, D., Grabowski, B., Körmann, F., Neugebauer, J., and Raabe, D.: Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: Importance of entropy contributions beyond the configurational one. Acta Mater. 100, 90 (2015).CrossRefGoogle Scholar
Tian, F., Delczeg, L., Chen, N., Varga, L.K., Shen, J., and Vitos, L.: Structural stability of NiCoFeCrAlx high-entropy alloy from ab initio theory. Phys. Rev. B 88, 085128 (2013).CrossRefGoogle Scholar
Cao, P., Ni, X., Tian, F., Varga, L.K., and Vitos, L.: Ab initio study of AlxMoNbTiV high-entropy alloys. J. Phys.: Condens. Matter 27, 075401 (2015).Google ScholarPubMed
Tian, F., Varga, L.K., Chen, N., Shen, J., and Vitos, L.: Ab initio design of elastically isotropic TiZrNbMoVx high-entropy alloys. J. Alloys Compd. 599, 19 (2014).CrossRefGoogle Scholar
Tian, F., Varga, L.K., Shen, J., and Vitos, L.: Calculating elastic constants in high-entropy alloys using the coherent potential approximation: Current issues and errors. Comput. Mater. Sci. 111, 350 (2016).CrossRefGoogle Scholar
Rowlands, D.A., Staunton, J.B., Györffy, B.L., Bruno, E., and Ginatempo, B.: Effects of short-range order on the electronic structure of disordered metallic systems. Phys. Rev. B: Condens. Matter Mater. Phys. 72, 045101 (2005).CrossRefGoogle Scholar
Rowlands, D.A., Ernst, A., Györffy, B.L., and Staunton, J.B.: Density functional theory for disordered alloys with short-range order: Systematic inclusion of charge-correlation effects. Phys. Rev. B: Condens. Matter Mater. Phys. 73, 165122 (2006).CrossRefGoogle Scholar
Ködderitzsch, D., Ebert, H., Rowlands, D.A., and Ernst, A.: Relativistic formulation of the Korringa–Kohn–Rostoker nonlocal coherent-potential approximation. New J. Phys. 9, 81 (2007).CrossRefGoogle Scholar
Rowlands, D.A.: Short-range correlations in disordered systems: Nonlocal coherent-potential approximation. Rep. Prog. Phys. 72, 086501 (2009).CrossRefGoogle Scholar
Ashcroft, N.W. and Mermin, N.D.: Solid State Physics (Rinehart and Winston, New York, 1976).Google Scholar
Butler, W.H.: Theory of electronic transport in random alloys: Korringa–Kohn–Rostoker coherent-potential approximation. Phys. Rev. B 31, 3260 (1985).CrossRefGoogle ScholarPubMed
Mertig, I., Zeller, R., and Dederichs, P.H.: Ab initio calculations of residual resistivities for dilute Ni alloys. Phys. Rev. B 47, 16178 (1993).CrossRefGoogle ScholarPubMed
Mott, N.F.: Electrons in transition metals. Adv. Phys. 13, 325 (1964).CrossRefGoogle Scholar
Fedorov, D.V., Zahn, P., Gradhand, M., and Mertig, I.: First-principles calculations of spin relaxation times of conduction electrons in Cu with nonmagnetic impurities. Phys. Rev. B: Condens. Matter Mater. Phys. 77, 092406 (2008).CrossRefGoogle Scholar
Fert, A. and Campbell, I.A.: Two-current conduction in nickel. Phys. Rev. Lett. 21, 1190 (1968).CrossRefGoogle Scholar
Fert, A. and Campbell, I.A.: Electrical resistivity of ferromagnetic nickel and iron based alloys. J. Phys. F: Met. Phys. 6, 849 (1976).CrossRefGoogle Scholar
Baibich, M.N., Broto, J.M., Fert, A., Van Dau, F.N., Petroff, F., Etienne, P., Creuzet, G., Friederich, A., and Chazelas, J.: Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472 (1988).CrossRefGoogle ScholarPubMed
Kubo, R.: Statistical mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Jpn. 12, 570 (1957).CrossRefGoogle Scholar
Swihart, J.C., Butler, W.H., Stocks, G.M., Nicholson, D.M., and Ward, R.C.: First-principles calculation of the residual electrical resistivity of random alloys. Phys. Rev. Lett. 57, 1181 (1986).CrossRefGoogle ScholarPubMed
Turek, I., Kudrnovský, J., Drchal, V., Szunyogh, L., and Weinberger, P.: Interatomic electron transport by semiempirical and ab initio tight-binding approaches. Phys. Rev. B 65, 125101 (2002).CrossRefGoogle Scholar
Tulip, P.R., Staunton, J.B., Lowitzer, S., Ködderitzsch, D., and Ebert, H.: Theory of electronic transport in random alloys with short-range order: Korringa–Kohn–Rostoker nonlocal coherent potential approximation. Phys. Rev. B: Condens. Matter Mater. Phys. 77, 165116 (2008).CrossRefGoogle Scholar
Lowitzer, S., Ködderitzsch, D., Ebert, H., Tulip, P.R., Marmodoro, A., and Staunton, J.B.: An ab initio investigation of how residual resistivity can decrease when an alloy is deformed. Europhys. Lett. 92, 37009 (2010).CrossRefGoogle Scholar
Banhart, J., Bernstein, R., Voitländer, J., and Weinberger, P.: Kubo and Boltzmann electrical residual resistivities of disordered transition-metal alloys. Solid State Commun. 77, 107 (1991).CrossRefGoogle Scholar
Banhart, J., Vernes, A., and Ebert, H.: Spin-orbit interaction and spontaneous galvanomagnetic effects in ferromagnetic alloys. Solid State Commun. 98, 129 (1996).CrossRefGoogle Scholar
Neumann, F.E.: Vorlesungen über die Theorie der Elastizität der festen Körper und des Lichtäthers, Meyer, O.E., ed. (B.G. Teubner-Verlag, Leipzig, Germany, 1885).Google Scholar
Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A.H., and Ong, N.P.: Anomalous Hall effect. Rev. Mod. Phys. 82, 1539 (2010).CrossRefGoogle Scholar
Berger, L.: Side-jump mechanism for the hall effect of ferromagnets. Phys. Rev. B 2, 4559 (1970).CrossRefGoogle Scholar
Smit, J. and Volger, J.: Spontaneous Hall effect in ferromagnetics. Phys. Rev. 92, 1576 (1953).CrossRefGoogle Scholar
Streda, P.: Theory of quantised Hall conductivity in two dimensions. J. Phys. C: Solid State Phys. 15, L717 (1982).CrossRefGoogle Scholar
Crépieux, A. and Bruno, P.: Theory of the anomalous Hall effect from the Kubo formula and the Dirac equation. Phys. Rev. B: Condens. Matter Mater. Phys. 64, 014416 (2001).CrossRefGoogle Scholar
Lowitzer, S., Ködderitzsch, D., and Ebert, H.: Coherent description of the intrinsic and extrinsic anomalous Hall effect in disordered alloys on an ab initio level. Phys. Rev. Lett. 105, 266604 (2010).CrossRefGoogle ScholarPubMed
Sinova, J., Valenzuela, S.O., Wunderlich, J., Back, C.H., and Jungwirth, T.: Spin Hall effects. Rev. Mod. Phys. 87, 1213 (2015).CrossRefGoogle Scholar
Liu, L., Pai, C.F., Li, Y., Tseng, H.W., Ralph, D.C., and Buhrman, R.A.: Spin-torque switching with the giant spin hall effect of tantalum. Science 336, 555 (2012).CrossRefGoogle ScholarPubMed
Vernes, A., Györffy, B.L., and Weinberger, P.: Spin currents, spin-transfer torque, and spin-Hall effects in relativistic quantum mechanics. Phys. Rev. B: Condens. Matter Mater. Phys. 76, 012408 (2007).CrossRefGoogle Scholar
Lowitzer, S., Gradhand, M., Ködderitzsch, D., Fedorov, D.V., Mertig, I., and Ebert, H.: Extrinsic and intrinsic contributions to the spin hall effect of alloys. Phys. Rev. Lett. 106, 056601 (2011).CrossRefGoogle ScholarPubMed
Landauer, R.: Electrical resistance of disordered one-dimensional lattices. Philos. Mag. 21, 863 (1970).CrossRefGoogle Scholar
Büttiker, M.: Four-terminal phase-coherent conductance. Phys. Rev. Lett. 57, 1761 (1986).CrossRefGoogle ScholarPubMed
Wysocki, A.L., Sabirianov, R.F., van Schilfgaarde, M., and Belashchenko, K.D.: First-principles analysis of spin-disorder resistivity of Fe and Ni. Phys. Rev. B 80, 224423 (2009).CrossRefGoogle Scholar
Glasbrenner, J.K., Belashchenko, K.D., Kudrnovský, J., Drchal, V., Khmelevskyi, S., and Turek, I.: First-principles study of spin-disorder resistivity of heavy rare-earth metals: Gd–Tm series. Phys. Rev. B 85, 214405 (2012).CrossRefGoogle Scholar
Liu, Y., Starikov, A.A., Yuan, Z., and Kelly, P.J.: First-principles calculations of magnetization relaxation in pure Fe, Co, and Ni with frozen thermal lattice disorder. Phys. Rev. B: Condens. Matter Mater. Phys. 84, 014412 (2011).CrossRefGoogle Scholar
Glasbrenner, J.K., Pujari, B.S., and Belashchenko, K.D.: Deviations from Matthiessen’s rule and resistivity saturation effects in Gd and Fe from first principles. Phys. Rev. B 89, 174408 (2014).CrossRefGoogle Scholar
Wang, L., Wesselink, R.J.H., Liu, Y., Yuan, Z., Xia, K., and Kelly, P.J.: Giant room temperature interface spin Hall and inverse spin Hall effects. Phys. Rev. Lett. 116, 196602 (2016).CrossRefGoogle ScholarPubMed
Belashchenko, K.D., Glasbrenner, J.K., and Wysocki, A.L.: Spin injection from a half-metal at finite temperatures. Phys. Rev. B: Condens. Matter Mater. Phys. 86, 224402 (2012).CrossRefGoogle Scholar
Butler, W.H., Zhang, X., Nicholson, D., and MacLaren, J.: First-principles calculations of electrical conductivity and giant magnetoresistance of Co‖Cu‖Co spin valves. Phys. Rev. B 52, 13399 (1995).CrossRefGoogle ScholarPubMed
Butler, W.H., Zhang, X-G., Schulthess, T.C., and Maclaren, J.M.: Spin-dependent tunneling conductance of Fe|MgO|Fe sandwiches. Phys. Rev. B 63, 054416 (2001).CrossRefGoogle Scholar
Ioffe, A.F. and Regel, A.R.: Non-crystalline, amorphous and liquid electronic semiconductors. Prog. Semicond. 4, 237 (1960).Google Scholar
Mooij, J.H.: Electrical conduction in concentrated disordered transition metal alloys. Phys. Status Solidi 17, 521 (1973).CrossRefGoogle Scholar
Gunnarsson, O., Calandra, M., and Han, J.E.: Colloquium: Saturation of electrical resistivity. Rev. Mod. Phys. 75, 1085 (2003).CrossRefGoogle Scholar
Fultz, B.: Vibrational thermodynamics of materials. Prog. Mater. Sci. 55, 247 (2010).CrossRefGoogle Scholar
Van De Walle, A. and Ceder, G.: The effect of lattice vibrations on substitutional alloy thermodynamics. Rev. Mod. Phys. 74, 11 (2002).CrossRefGoogle Scholar
Taylor, D.W.: Vibrational properties of imperfect crystals with large defect concentrations. Phys. Rev. 156, 1017 (1967).CrossRefGoogle Scholar
Wakabayashi, N.: Impurity phonon modes in Ge–Si. Phys. Rev. B 8, 6015 (1973).CrossRefGoogle Scholar
Tsunoda, Y., Kunitomi, N., Wakabayashi, N., Nicklow, R.M., and Smith, H.G.: Phonon dispersion relations in the disordered Ni1−xPtx system. Phys. Rev. B 19, 2876 (1979).CrossRefGoogle Scholar
Kaplan, T. and Mostoller, M.: Local modes in Al0.1Cu0.9 and (NH4)0.1K0.9Cl in the coherent-potential approximation. Phys. Rev. B 9, 353 (1974).CrossRefGoogle Scholar
Kamitakahara, W.A. and Taylor, D.W.: Comparison of single-site approximations for the lattice dynamics of mass-disordered alloys. Phys. Rev. B 10, 1190 (1974).CrossRefGoogle Scholar
Kaplan, T. and Mostoller, M.: Force constant and mass disorder in vibrational systems in the coherent-potential approximation. Phys. Rev. B 9, 1783 (1974).CrossRefGoogle Scholar
Takeno, S.: A self-consistent solution of a Dyson equation in many-impurity problems in solids. Phys. Lett. A 26, 547 (1968).CrossRefGoogle Scholar
Nickel, B.G. and Butler, W.H.: Problems in strong-scattering binary alloys. Phys. Rev. Lett. 30, 373 (1973).CrossRefGoogle Scholar
Gonis, A. and Garland, J.W.: Multishell method: Exact treatment of a cluster in an effective medium. Phys. Rev. B 16, 2424 (1977).CrossRefGoogle Scholar
Ghosh, S., Leath, P.L., and Cohen, M.H.: Phonons in random alloys: The itinerant coherent-potential approximation. Phys. Rev. B 66, 214206 (2002).CrossRefGoogle Scholar
Dutta, B. and Ghosh, S.: Vibrational properties of NixPt1−x alloys: An understanding from ab initio calculations. J. Appl. Phys. 109, 053714 (2011).CrossRefGoogle Scholar
Alam, A., Ghosh, S., and Mookerjee, A.: Phonons in disordered alloys: Comparison between augmented-space-based approximations for configuration averaging to integration from first principles. Phys. Rev. B: Condens. Matter Mater. Phys. 75, 134202 (2007).CrossRefGoogle Scholar
Dutta, B. and Ghosh, S.: The phonon spectra and elastic constants of PdxFe1−x: An understanding from inter-atomic interactions. J. Phys.: Condens. Matter 21, 095411 (2009).Google ScholarPubMed
Dutta, B., Bisht, K., and Ghosh, S.: Ab initio calculation of phonon dispersions in size-mismatched disordered alloys. Phys. Rev. B: Condens. Matter Mater. Phys. 82, 134207 (2010).CrossRefGoogle Scholar
Alam, A. and Mookerjee, A.: Vibrational properties of phonons in random binary alloys: An augmented space recursive technique in the k representation. Phys. Rev. B: Condens. Matter Mater. Phys. 69, 024205 (2004).CrossRefGoogle Scholar
Alam, A., Chouhan, R.K., and Mookerjee, A.: Phonon modes and vibrational entropy of disordered alloys with short-range order: A first-principles calculation. Phys. Rev. B: Condens. Matter Mater. Phys. 83, 054201 (2011).CrossRefGoogle Scholar
Boykin, T.B. and Klimeck, G.: Practical application of zone-folding concepts in tight-binding calculations. Phys. Rev. B: Condens. Matter Mater. Phys. 71, 115215 (2005).CrossRefGoogle Scholar
Boykin, T.B., Kharche, N., Klimeck, G., and Korkusinski, M.: Approximate bandstructures of semiconductor alloys from tight-binding supercell calculations. J. Phys.: Condens. Matter 19, 36203 (2007).Google Scholar
Allen, P.B., Berlijn, T., Casavant, D.A., and Soler, J.M.: Recovering hidden Bloch character: Unfolding electrons, phonons, and slabs. Phys. Rev. B 87, 85322 (2013).CrossRefGoogle Scholar
Ikeda, Y., Carreras, A., Seko, A., Togo, A., and Tanaka, I.: Mode decomposition based on crystallographic symmetry in the band-unfolding method. Phys. Rev. B 95, 24305 (2017).CrossRefGoogle Scholar
Delaire, O., Al-Qasir, I.I., May, A.F., Li, C.W., Sales, B.C., Niedziela, J.L., Ma, J., Matsuda, M., Abernathy, D.L., and Berlijn, T.: Heavy-impurity resonance, hybridization, and phonon spectral functions in Fe1−xMxSi (M = Ir, Os). Phys. Rev. B: Condens. Matter Mater. Phys. 91, 094307 (2015).CrossRefGoogle Scholar
Ikeda, Y., Körmann, F., Dutta, B., Carreras, A., Seko, A., Neugebauer, J., and Tanaka, I.: Temperature-dependent phonon spectra of magnetic random solid solutions. npj Comput. Mater. 4, 7 (2018).CrossRefGoogle Scholar
Körmann, F., Ikeda, Y., Grabowski, B., and Sluiter, M.H.F.: Phonon broadening in high entropy alloys. npj Comput. Mater. 3, 36 (2017).CrossRefGoogle Scholar
Kanzaki, H.: Point defects in face-centred cubic lattice-I distortion around defects. J. Phys. Chem. Solids 2, 24 (1957).CrossRefGoogle Scholar
Matsubara, T.: Theory of diffuse scattering of X-rays by local lattice distortions. J. Phys. Soc. Jpn. 7, 270 (1952).CrossRefGoogle Scholar
Zhuravlev, I.A., An, J.M., and Belashchenko, K.D.: Microscopic first-principles model of strain-induced interaction in concentrated size-mismatched alloys. Phys. Rev. B 90, 214108 (2014).CrossRefGoogle Scholar
Rubini, S. and Ballone, P.: Quasiharmonic and molecular-dynamics study of the martensitic transformation in Ni–Al alloys. Phys. Rev. B 48, 99 (1993).CrossRefGoogle ScholarPubMed
Souvatzis, P., Eriksson, O., Katsnelson, M.I., and Rudin, S.P.: Entropy driven stabilization of energetically unstable crystal structures explained from first principles theory. Phys. Rev. Lett. 100, 095901 (2008).CrossRefGoogle ScholarPubMed
Leonov, I., Poteryaev, A.I., Anisimov, V.I., and Vollhardt, D.: Calculated phonon spectra of paramagnetic iron at the α–γ Phase transition. Phys. Rev. B: Condens. Matter Mater. Phys. 85, 020401 (2012).CrossRefGoogle Scholar
Körmann, F., Dick, A., Grabowski, B., Hickel, T., and Neugebauer, J.: Atomic forces at finite magnetic temperatures: Phonons in paramagnetic iron. Phys. Rev. B: Condens. Matter Mater. Phys. 85, 125104 (2012).CrossRefGoogle Scholar
Steneteg, P., Alling, B., and Abrikosov, I.A.: Equation of state of paramagnetic CrN from ab initio molecular dynamics. Phys. Rev. B 85, 1 (2012).CrossRefGoogle Scholar
Körmann, F., Grabowski, B., Dutta, B., Hickel, T., Mauger, L., Fultz, B., and Neugebauer, J.: Temperature dependent magnon-phonon coupling in bcc Fe from theory and experiment. Phys. Rev. Lett. 113, 165503 (2014).CrossRefGoogle ScholarPubMed
Alling, B., Hultberg, L., Hultman, L., and Abrikosov, I.A.: Strong electron correlations stabilize paramagnetic cubic Cr1−xAlxN solid solutions. Appl. Phys. Lett. 102, 031910 (2013).CrossRefGoogle Scholar
Hellman, O. and Abrikosov, I.A.: Temperature-dependent effective third-order interatomic force constants from first principles. Phys. Rev. B: Condens. Matter Mater. Phys. 88, 144301 (2013).CrossRefGoogle Scholar
Hellman, O., Abrikosov, I.A., and Simak, S.I.: Lattice dynamics of anharmonic solids from first principles. Phys. Rev. B: Condens. Matter Mater. Phys. 84, 180301 (2011).CrossRefGoogle Scholar
Shulumba, N., Alling, B., Hellman, O., Mozafari, E., Steneteg, P., Odén, M., and Abrikosov, I.A.: Vibrational free energy and phase stability of paramagnetic and antiferromagnetic CrN from ab initio molecular dynamics. Phys. Rev. B: Condens. Matter Mater. Phys. 89, 174108 (2014).CrossRefGoogle Scholar
Allen, P.B., Feldman, J.L., Fabian, J., and Wooten, F.: Diffusons, locons and propagons: Character of atomie yibrations in amorphous Si. Philos. Mag. B 79, 1715 (1999).CrossRefGoogle Scholar
Seyf, H.R., Yates, L., Bougher, T.L., Graham, S., Cola, B.A., Detchprohm, T., Ji, M-H., Kim, J., Dupuis, R., Lv, W., and Henry, A.: Rethinking phonons: The issue of disorder. npj Comput. Mater. 3, 49 (2017).CrossRefGoogle Scholar