Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T10:29:29.376Z Has data issue: false hasContentIssue false

Electromechanical tuning of nanoscale MIM diodes by nanoindentation

Published online by Cambridge University Press:  27 June 2013

Prakash Periasamy
Affiliation:
Department of Metallurgical and Materials Engineering, Colorado School of Mines, Golden, Colorado 80401
Michael Scott Bradley
Affiliation:
Department of Physics, Colorado School of Mines, Golden, Colorado 80401
Philip A. Parilla
Affiliation:
National Center for Photovoltaics, National Renewable Energy Laboratory, Golden, Colorado 80401
Joseph J. Berry
Affiliation:
National Center for Photovoltaics, National Renewable Energy Laboratory, Golden, Colorado 80401
David S. Ginley
Affiliation:
National Center for Photovoltaics, National Renewable Energy Laboratory, Golden, Colorado 80401
Ryan P. O’Hayre
Affiliation:
Department of Metallurgical and Materials Engineering, Colorado School of Mines, Golden, Colorado 80401
Corinne E. Packard*
Affiliation:
Department of Metallurgical and Materials Engineering, Colorado School of Mines, Golden, Colorado 80401; and National Renewable Energy Laboratory, Golden, Colorado 80401
*
a)Address all correspondence to this author. e-mail: cpackard@mines.edu
Get access

Abstract

Nanoscale metal–insulator–metal (MIM) diodes consisting of a nanoscale-thickness insulator layer sandwiched between two dissimilar metal layers offer the potential for very high frequency alternating current to direct current signal rectification. Active nanoscale tuning of electronic tunneling through the insulator layer to form point contact diodes has previously been limited to barriers composed of soft organic films due to the force limitations of conductive-atomic force microscopy. In this paper, MIM diodes with oxide-based insulators are formed in situ with sub-nanometer depth precision and characterized using a nanoindenter equipped with electrical testing capabilities. Simultaneous measurement of both electrical and nano-mechanical information is accomplished in an MIM stack of the form Nb/Nb2O5/boron-doped diamond nanoindenter tip. Using this technique, we show that the diode behavior can be electromechanically tuned over a range of more than 1 V at equivalent currents via small changes in indentation depth and the results can be modeled using a Fowler–Nordheim approximation.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

b)

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/jmr-editor-manuscripts/

References

REFERENCES

Grossman, E.N., Harvey, T.E., and Reintsema, C.D.: Controlled barrier modification in Nb/NbOx/Ag metal insulator metal tunnel diodes. J. Appl. Phys. 91(12), 10134 (2002).Google Scholar
Eliasson, B.J.: Metal-insulator-metal diodes for solar energy conversion, Ph.D. Thesis, University of Colorado, Boulder, CO, 2001.Google Scholar
Hoofring, A.B., Kapoor, V.J., and Krawczonek, W.: Sub-micron nickel-oxide-gold tunnel diode detectors for rectennas. J. Appl. Phys. 66(1), 430 (1989).CrossRefGoogle Scholar
Kotter, D.K., Novack, S.D., Slafer, W.D., and Pinhero, P.J.: Theory and manufacturing processes of solar nanoantenna electromagnetic collectors. J. Sol. Energy Eng. 132(1), 011014 (2010).CrossRefGoogle Scholar
Osgood, R.M., Kimball, B.R., and Carlson, J.: Nanoantenna-coupled MIM nanodiodes for efficient VIS/NIR energy conversion. Proc. SPIE Int. Soc. Opt. Eng. 6652, 65203 (2007).Google Scholar
Bean, J., Tiwari, B., Szakmány, G., Bernstein, G.H., Fay, P., and Porod, W.: Nanoantenna infrared detectors, in Cellular Nanoscale Sensory Wave Computing, edited by Baatar, C., Porod, W., and Roska, T. (Springer, New York, 2010), p. 27.CrossRefGoogle Scholar
Choi, K., Yesilkoy, F., Ryu, G., Cho, S.H., Goldsman, N., Dagenais, M. and Peckerar, M.: A focused asymmetric metal-insulator-metal tunneling diode: Fabrication, DC characteristics and RF rectification analysis. IEEE Trans. Electron Devices 58(10), 3519 (2011).CrossRefGoogle Scholar
Grover, S., Dmitriyeva, O., Estes, M.J., and Moddel, G.: Traveling-wave metal/insulator/metal diodes for improved infrared bandwidth and efficiency of antenna-coupled rectifiers. IEEE Trans. Nanotechnol. 9(6), 716 (2010).CrossRefGoogle Scholar
Rosenfeld, D., Schmid, P.E., Szeles, S., Levy, F., Demarne, V., and Grisel, A.: Electrical transport properties of thin-film metal-oxide-metal Nb2O5 oxygen sensors. Sens. Actuators, B 37(1–2), 83 (1996).CrossRefGoogle Scholar
Masalmeh, S.K., Stadermann, H.K.E., and Korving, J.: Mixing and rectification properties of MIM diodes. Physica B 218 (1–4), 56 (1996).Google Scholar
Riccius, H.D. and Siemsen, K.J.: Point-contact diodes. Appl. Phys. A 35(2), 67 (1984).CrossRefGoogle Scholar
Ward, D.R., Huser, F., Pauly, F., Cuevas, J.C., and Natelson, D.: Optical rectification and field enhancement in a plasmonic nanogap. Nat. Nanotechnol. 5(10), 732 (2010).Google Scholar
Bareiss, M., Ante, F., Kalblein, D., Jegert, G., Jirauschek, C., Scarpa, G., Fabel, B., Nelson, E.M., Timp, G., Zschieschang, U., Klauk, H., Porod, W., and Lugli, P.: High-yield transfer printing of metal insulator metal nanodiodes. ACS Nano. 6(3), 2853 (2012).Google Scholar
Periasamy, P., Bergeson, J.D., Parilla, P.A., Ginley, D.S., and O'Hayre, R.P.: Metal-insulator-metal point-contact diodes as a rectifier for rectenna. Proc. IEEE, 002943 (2010).Google Scholar
Periasamy, P., Berry, J.J., Dameron, A.A., Bergeson, J.D., Ginley, D.S., O'Hayre, R.P., and Parilla, P.A.: Fabrication and characterization of MIM diodes based on Nb/Nb2O5 via a rapid screening technique. Adv. Mater. 23(27), 3080 (2011).Google Scholar
Periasamy, P., Guthrey, H.L., Abdulagatov, A.I., Ndione, P.F., Berry, J.J., Ginley, D.S., George, S.M., Parilla, P.A., and O'Hayre, R.P.: Metal–insulator–metal diodes: Role of the insulator layer on the rectification performance. Adv Mater. 25(9), 1301 (2013).Google Scholar
Beebe, J.M., Kim, B., Gadzuk, J.W., Frisbie, C.D., and Kushmerick, J.G.: Transition from direct tunneling to field emission in metal-molecule-metal junctions. Phys. Rev. Lett. 97(2), 026801 (2006).Google Scholar
DelRio, F.W., Steffens, K.L., Jaye, C., Fischer, D.A., and Cook, R.F.: Elastic, adhesive, and charge transport properties of a metal-molecule-metal junction: The role of molecular orientation, order, and coverage. Langmuir 26(3), 1688 (2010).CrossRefGoogle ScholarPubMed
Kelley, T.W. and Frisbie, C.D.: Point contact current–voltage measurements on individual organic semiconductor grains by conducting probe atomic force microscopy. J. Vac. Sci. Technol., B 18, 632 (2000).Google Scholar
Kim, D.I., Pradeep, N., DelRio, F.W., and Cook, R.F.: Mechanical and electrical coupling at metal-insulator-metal nanoscale contacts. Appl. Phys. Lett. 93, 203102 (2008).Google Scholar
Olbrich, A., Ebersberger, B., and Boit, C.: Conducting atomic force microscopy for nanoscale electrical characterization of thin SiO2 . Appl. Phys. Lett. 73(21), 3114 (1998).Google Scholar
Shirakashi, J., Matsumoto, K., Miura, N., and Konagai, M.: Nb/Nb oxide-based planar-type metal/insulator/metal (MIM) diodes fabricated by atomic force microscope (AFM) nano-oxidation process. Jpn. J. Appl. Phys. 36(2), L1120 (1997).Google Scholar
Bhaskaran, M., Sriram, S., Ruffell, S., and Mitchell, A.: Nanoscale characterization of energy generation from piezoelectric thin films. Adv. Funct. Mater. 21(12), 2251 (2011).Google Scholar
Ruffell, S., Bradby, J., Williams, J., and Warren, O.: An in situ electrical measurement technique via a conducting diamond tip for nanoindentation in silicon. J. Mater. Res. 22, 578 (2007).Google Scholar
Grundner, M. and Halbritter, J.: On the natural Nb2O5 growth on Nb at room-temperature. Surf. Sci. 136(1), 144 (1984).CrossRefGoogle Scholar
Sprouster, D.J., Ruffell, S., Bradby, J.E., Williams, J.S., Lockrey, M.N., Phillips, M.R., Major, R.C., and Warren, O.L.: Structural characterization of B-doped diamond nanoindentation tips. J. Mater. Res. 26(24), 3051 (2011).Google Scholar
Tsui, T.Y., Vlassak, J., and Nix, W.D.: Indentation plastic displacement field: Part II. The case of hard films on soft substrates. J. Mater. Res. 14(6), 2204 (1999).CrossRefGoogle Scholar
Simmons, J.G.: Electric tunnel effect between dissimilar electrodes separated by a thin insulating film. J. Appl. Phys. 34(9), 2581 (1963).CrossRefGoogle Scholar
Simmons, J.G.: Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. J. Appl. Phys. 34(6), 1793 (1963).Google Scholar
Simmons, J.G.: Low-voltage current-voltage relationship of tunnel junctions. J. Appl. Phys. 34(1), 238 (1963).Google Scholar
Simmons, J.G.: Potential barriers and emission‐limited current flow between closely spaced parallel metal electrodes. J. Appl. Phys. 35(8), 2472 (1964).Google Scholar
Stratton, R.: Volt-current characteristics for tunneling through insulating films. J. Phys. Chem. Solids 23(9), 1177 (1962).CrossRefGoogle Scholar
Hartman, T.E.: Tunneling through asymmetric barriers. J. Appl. Phys. 35(11), 3283 (1964).Google Scholar
Brinkman, W.F.: Tunneling conductance of asymmetrical barriers. J. Appl. Phys. 41(5), 1915 (1970).Google Scholar
Hansen, K. and Brandbyge, M.: Current-voltage relation for thin tunnel barriers: Parabolic barrier model. J. Appl. Phys. 95(7), 3582 (2004).Google Scholar
Muhammad, A.J., Morgan, D.V., and Guile, A.E.: Electronic conduction in Nb/Nb2O5/In structures and the effect of space-charge overlap. Phys. Status Solidi A 90(1), 371 (1985).Google Scholar
O'Regan, T., Chin, M., Tan, C., and Birdwell, A.: Modeling, Fabrication, and Electrical Testing of Metal-Insulator-Metal Diode (Army Research Laboratory, ARL-TN-0464, Adelphi, MD, 2011).Google Scholar