Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T01:01:34.275Z Has data issue: false hasContentIssue false

Electrochemically lithiated V2O5 films: An optically passive ion storage for transparent electrochromic devices

Published online by Cambridge University Press:  31 January 2011

A. Talledo
Affiliation:
Physics Department, Chalmers University of Technology and University of Gothenburg, S-412 96 Gothenburg, Sweden
A. M. Andersson
Affiliation:
Physics Department, Chalmers University of Technology and University of Gothenburg, S-412 96 Gothenburg, Sweden
C. G. Granqvist
Affiliation:
Physics Department, Chalmers University of Technology and University of Gothenburg, S-412 96 Gothenburg, Sweden
Get access

Abstract

LiyV2O5 films were produced by reactive de magnetron sputtering followed by electrochemical posttreatment in LiClO4. X-ray diffraction showed an orthorhombic structure. Spectrophotometric transmittance and reflectance measurements demonstrated that the luminous and solar absorptance increased moderately when y increased from zero to unity. It is argued that LiyV2O5 is useful as an ion storage material operating in conjunction with electrochromic films.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Granqvist, C. G., Spectrally Selective Surfaces for Heating and Cooling Applications (SPIE Optical Engineering Press, Bellingham, 1989).CrossRefGoogle Scholar
2Large-area Chromogenics: Materials and Devices for Transmittance Control, edited by Lampert, C. M. and Granqvist, C. G. (SPIE Optical Engineering Press, Bellingham, 1990).Google Scholar
3Lampert, C. M., Solar Energy Mater. 11, 1 (1984).CrossRefGoogle Scholar
4Svensson, J. S. E. M. and Granqvist, C. G., Solar Energy Mater. 12, 391 (1985).CrossRefGoogle Scholar
5Andersson, A. M., Granqvist, C. G., and Stevens, J. R., Appl. Opt. 28, 3295 (1989).CrossRefGoogle Scholar
6Passerini, S., Scrosati, B., Gorenstein, A., Andersson, A. M., and Granqvist, C.G., The Electrochem. Soc. Fall Meeting, Hollywood, FL, October 1520, 1989; Extended Abstracts 89–2900.Google Scholar
7Eriksson, T. S. and Granqvist, C. G., J. Appl. Phys. 60, 2081 (1986).CrossRefGoogle Scholar
8 Donnelly Corp., Holland, MI.Google Scholar
9Hub, S., Tranchant, A., and Messina, R., Electrochim. Acta 33, 997 (1988).CrossRefGoogle Scholar
10Cogan, S. F., Nguyen, N. M., Perrotti, S. J., and Rauh, R. D., Proc. Soc. Photo-Opt. Instrum. Engr. 1016, 57 (1988); J. Appl. Phys. 66, 1333 (1989).Google Scholar
11Hansen, S. D. and Aita, C. R., J. Vac. Sci. Technol. A3, 660 (1985).CrossRefGoogle Scholar
12Aita, C.R., Kwok, C-K., and Kao, M.L. (Proc. Mater. Res. Soc. Symp.) (Materials Research Society, Pittsburgh, PA, 1987), Vol. 82, p. 435.Google Scholar
13Dickens, P. G., Chippindale, A. M., and Hibble, S. J., Solid State Ionics 34, 79 (1989).CrossRefGoogle Scholar
14Colton, R. J., Guzman, A. M., and Rabalais, J.W., J. Appl. Phys. 49, 409 (1978).CrossRefGoogle Scholar
15Fujita, Y., Miyazaki, K., and Tatsuyama, C., Jpn. J. Appl. Phys. 24, 1082 (1985).CrossRefGoogle Scholar
16Kouda, Y., Yoshino, T., and Baba, N., Nippon Kagaku Kaishi (6), 1050 (1985).CrossRefGoogle Scholar
17Yoshino, T., Baba, N., and Kouda, Y., Jpn. J. Appl. Phys. 26, 782 (1987).CrossRefGoogle Scholar
18Kobayashi, S., Takemura, T., and Kaneko, F., Jpn. J. Appl. Phys. 26, L1274 (1987).CrossRefGoogle Scholar
19Wyszecki, G. and Stiles, W. S., Color Science (Wiley, New York, 1982), 2nd ed.Google Scholar
20Moon, P., J. Franklin Inst. 230, 583 (1940).CrossRefGoogle Scholar