Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T21:56:03.119Z Has data issue: false hasContentIssue false

Electrical characterization of quasi fullerene junctions formed with different metallic electrodes

Published online by Cambridge University Press:  30 August 2016

Rupan Preet Kaur*
Affiliation:
Department of Electronics Technology, Guru Nanak Dev University, Amritsar, India
Ravinder Singh Sawhney
Affiliation:
Department of Electronics Technology, Guru Nanak Dev University, Amritsar, India
Derick Engles
Affiliation:
Department of Electronics Technology, Guru Nanak Dev University, Amritsar, India
*
a) Address all correspondence to this author. e-mail: bhullar.rupan@gmail.com
Get access

Abstract

We calculate, compare, and discuss the charge transport properties through quasi fullerene C40 obtained in three different electrode–C40–electrode testbeds by employing density functional theory combined with nonequilibrium Green's function, to predict the electronic structure of molecular junctions formed from copper, silver, and gold electrodes. We investigate various metrics such as chemical potential of electrodes, density of states, transmission spectra, Mulliken population, and molecular projected self-consistent Hamiltonian eigen states to develop a novel insight about the varying transport phenomenon as the metallic part of the scattering region is modified. We conclude that all the junctions exhibit strong metallic character displaying ballistic conductance of order of more than G 0 accompanied by pronounced ripples in their conductance spectrum and small rectifying behavior in their current spectrum. This rectifying behavior is found to stem from the asymmetric shifting of orbital energies with changing bias voltage due to change in relative charge transfer through central molecule C40.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Joachim, C., Gimzewski, J.K., and Aviram, A.: Electronics using hybrid-molecular and mono-molecular devices. Nature 408, 541548 (2000).CrossRefGoogle ScholarPubMed
Nitzan, A. and Ratner, M.A.: Electron transport in molecular wire junctions. Science 300, 13841389 (2003).Google Scholar
Elbing, M., Ochs, R., Koentopp, M., Fischer, M., Von Hänisch, C., Weigend, F., Evers, F., Weber, H.B., and Mayor, M.: A single-molecule diode. Proc. Natl. Acad. Sci. U. S. A. 102, 8815 (2005).Google Scholar
Yu, L., Keane, Z., Ciszek, J., Cheng, L., Tour, J., Baruah, T., Pederson, M., and Natelson, D.: Kondo resonances and anomalous gate dependence in the electrical conductivity of single-molecule transistors. Phys. Rev. Lett. 95, 256803 (2005).Google Scholar
Chen, F., Li, X., Hihath, J., Huang, Z., and Tao, N.J.: Effect of anchoring groups on single-molecule conductance: Comparative study of thiol-, amine-, and carboxylic-acid-terminated molecules. J. Am. Chem. Soc. 128, 1587415881 (2006).Google Scholar
Martin, C.A., Ding, D., Sørensen, J.K., Bjørnholm, T., van Ruitenbeek, J.M., and van der Zant, H.S.J.: Fullerene-based anchoring groups for molecular electronics. J. Am. Chem. Soc. 130, 1319813199 (2008).Google Scholar
Venkataraman, L., Klare, J.E., Tam, I.W., Nuckolls, C., Hybertsen, M.S., and Steigerwald, M.L.: Single-molecule circuits with well-defined molecular conductance. Nano Lett. 6, 458462 (2006).Google Scholar
Yanson, A.I., Bollinger, G.R., Van den Brom, H.E., Agrait, N., and Van Ruitenbeek, J.M.: Formation and manipulation of a metallic wire of single gold atoms. Nature 395, 783785 (1998).Google Scholar
Ohnishi, H., Kondo, Y., and Takayanagi, K.: Quantized conductance through individual rows of suspended gold atoms. Nature 395, 780783 (1998).CrossRefGoogle Scholar
Smit, R.H.M., Untiedt, C., Yanson, A.I., and van Ruitenbeek, J.M.: Common origin for surface reconstruction and the formation of chains of metal atoms. Phys. Rev. Lett. 87, 266102 (2001).Google Scholar
Csonka, S.z., Halbritter, A., and Mihály, G.: Pulling gold nanowires with a hydrogen clamp: Strong interactions of hydrogen molecules with gold nanojunctions. Phys. Rev. B: Condens. Matter Mater. Phys. 73, 075405 (2006).Google Scholar
Kiguchi, M., Stadler, R., Kristensen, I.S., Djukic, D., and van Ruitenbeek, J.M.: Evidence for a single hydrogen molecule connected by an atomic chain. Phys. Rev. Lett. 98, 146802 (2007).Google Scholar
Tao, J., Zhao, J., Tang, C., Kang, Y., and Li, Y.: Mechanism study of self-organized TiO2 nanotube arrays by anodization. New J. Chem. 32, 21642168 (2008).Google Scholar
Kiguchi, M., Hashimoto, K., Ono, Y., Taketsugu, T., and Murakoshi, K.: Formation of the Pd atomic chain in hydrogen atmosphere. Phys. Rev. B: Condens. Matter Mater. Phys. 81, 195401 (2010).CrossRefGoogle Scholar
Makk, P., Balogh, Z., Csonka, S., and Halbritter, A.: Pulling platinum atomic chains by carbon monoxide molecules. Nanoscale 4, 47394745 (2012).CrossRefGoogle ScholarPubMed
Wu, S., González, M.T., Huber, R., Grunder, S., Mayor, M., Schönenberger, C., and Calame, M.: Molecular junctions based on aromatic coupling. Nat. Nanotechnol. 3, 569574 (2008).CrossRefGoogle ScholarPubMed
Xiao, X., Xu, B., and Tao, N.J.: Measurement of single molecule conductance: Benzenedithiol and benzenedimethanethiol. Nano Lett. 4, 267271 (2004).Google Scholar
Kim, Y., Hellmuth, T.J., Burkle, M., Pauly, F., and Scheer, E.: Characteristics of amine-ended and thiol-ended alkane single-molecule junctions revealed by inelastic electron tunneling spectroscopy. ACS Nano 5, 41044111 (2011).Google Scholar
Kim, Y., Song, H., Strigl, F., Pernau, H.F., Lee, T., and Scheer, E.: Conductance and vibrational states of single-molecule junctions controlled by mechanical stretching and material variation. Phys. Rev. Lett. 106, 196804 (2011).Google Scholar
Cheng, Z-L., Skouta, R., Vazquez, H., Widawsky, J.R., Schneebeli, S., Chen, W., Hybertsen, M.S., Breslow, R., and Venkataraman, L.: In situ formation of highly conducting covalent Au–C contacts for single-molecule junctions. Nat. Nanotechnol. 6, 353357 (2011).CrossRefGoogle ScholarPubMed
Dorogi, M., Gomez, J., Osifchin, R., Andres, R.P., and Reifenberger, R.: Room-temperature Coulomb blockade from a self-assembled molecular nanostructure. Phys. Rev. B: Condens. Matter Mater. Phys. 52, 9071 (1995).Google Scholar
Andres, R.P., Datta, S., Dorogi, M., Gomez, J., Henderson, J.I., Janes, D.B., Kolagunta, V.R., Kubiak, C.P., Mahoney, W., Osifchin, R.F., Reifenberger, R., Samanta, M.P., and Tian, W.: Room temperature Coulomb blockade and Coulomb staircase from self-assembled nanostructures. J. Vac. Sci. Technol., A 14, 1178 (1996).CrossRefGoogle Scholar
Andres, R.P., Bein, T., Dorogi, M., Feng, S., Henderson, J.I., Kubiak, C.P., Mahoney, W., Osifchin, R.G., and Reifenberger, R.: “Coulomb staircase” at room temperature in a self-assembled molecular nanostructure. Science 272, 1323 (1996).CrossRefGoogle Scholar
Bumm, L.A., Arnold, J.J., Cygan, M.T., Dunbar, T.D., Burgin, T.P., Jones, L. II, Allara, D.L., Tour, J.M., and Weiss, P.S.: Are single molecular wires conducting? Science 271, 1705 (1996).Google Scholar
Metzger, R.M., Chen, B.C., Hopfner, U., and Lakshmikantham, M.V.: Unimolecular electrical rectification in hexadecylquinolinium tricyanoquinodimethanide. J. Am. Chem. Soc. 119, 10455 (1997).CrossRefGoogle Scholar
Metzger, R.M.: Unimolecular electrical rectifiers. Chem. Rev. 103, 38033834 (2003).Google Scholar
Hong, S., Bielefeld, J., Andres, R.P., and Reifenberger, R.: Nanowires, Serena, P. and Garcia, N. eds.; Kluwer Academic: Dodrecht, 1997; pp. 351372.CrossRefGoogle Scholar
Cuberes, M.T., Schlittler, R.R., Jung, T.A., Schaumburg, K., and Gimzewski, J.K.: A scanning tunneling microscopy investigation of 4,4′-dimethylbianthrone molecules adsorbed on Cu(111). Surf. Sci. 383, 37 (1997).Google Scholar
Dhirani, A., Lin, P-H., Guyot-Sionnest, P., Zehner, R.W., and Sita, L.R.: Self-assembled molecular rectifiers. J. Chem. Phys. 106, 5249 (1997).Google Scholar
Reed, M.A., Zhou, C., Muller, C.J., Burgin, T.P., and Tour, J.M.: Conductance of a molecular junction. Science 278, 252 (1997).Google Scholar
Chen, J., Calvet, L.C., Reed, M.A., Carr, D.W., Grubisha, D.S., and Bennett, D.W.: Electronic transport through metal–1,4-phenylene diisocyanide–metal junctions. Chem. Phys. Lett. 313, 741 (1999).Google Scholar
Kergueris, C., Bourgoin, J-P., Palacin, S., Esteve, D., Urbina, C., Magoga, M., and Joachim, C.: Electron transport through a metal–molecule–metal junction. Phys. Rev. B: Condens. Matter Mater. Phys. 59, 12505 (1999).CrossRefGoogle Scholar
Kergueris, C., Bourgoin, J-P., and Palacin, S.: Experimental investigations of the electrical transport properties of dodecanethiol and α,ω bisthiolterthiophene molecules embedded in metal–molecule–metal junctions. Nanotechnology 10, 8 (1999).Google Scholar
Wold, D.J. and Frisbie, C.D.: Formation of metal–molecule–metal tunnel junctions: Microcontacts to alkanethiol monolayers with a conducting AFM tip. J. Am. Chem. Soc. 122, 2970 (2000).Google Scholar
Andres, R.P., Datta, S., Janes, D.B., Kubiak, C.P., and Reifenberger, R.: Handbook of Nanostructured Materials and Nanotechnology, Vol. 3, Nalwa, H.S. ed.; Academic Press: New York, 2000; pp. 179231.Google Scholar
Mujica, V., Kemp, M., Roitberg, A., and Ratner, M.A.: Current–voltage characteristics of molecular wires: Eigenvalue staircase, Coulomb blockade, and rectification. J. Chem. Phys. 104, 7296 (1996).CrossRefGoogle Scholar
Kemp, M., Roitberg, A., Mujica, V., Wanta, T., and Ratner, M.A.: Molecular wires: Extended coupling and disorder effects. J. Phys. Chem. 100, 8349 (1996).Google Scholar
Samanta, M.P., Tian, W., Datta, S., Henderson, J.I., and Kubiak, C.P.: Electronic conduction through organic molecules. Phys. Rev. B: Condens. Matter Mater. Phys. 53, 7626 (1996).Google Scholar
Joachim, C. and Vinuesa, J.F.: Length dependence of the electronic transparence (conductance) of a molecular wire. Europhys. Lett. 33, 635 (1996).Google Scholar
Boulas, C., Davidovits, J.V., Rondelez, F., and Vuillaume, D.: Suppression of charge carrier tunneling through organic self-assembled monolayers. Phys. Rev. Lett. 76, 4797 (1996).Google Scholar
Datta, S., Tian, W., Hong, S., Reifenberger, R., Henderson, J.I., and Kubiak, C.P.: Current–voltage characteristics of self-assembled monolayers by scanning tunneling microscopy. Phys. Rev. Lett. 79, 2530 (1997).Google Scholar
Tian, W., Datta, S., Hong, S., Reifenberger, R., and Henderson, J.I.: Resistance of molecular nanostructures. Phys. E 1, 304 (1997).Google Scholar
Tian, W., Datta, S., Hong, S., Reifenberger, R., Henderson, J., and Kubiak, C.: Conductance spectra of molecular wires. J. Chem. Phys. 109, 2874 (1998).Google Scholar
Ratner, M.A., Davis, B., Kemp, M., Mujica, V., Roitberg, A., and Yaliraki, S.: Molecular Electronics: Science and Technology, Aviram, A. and Ratner, M. eds.; New York Academy of Sciences: New York, 1998; p. 852.Google Scholar
Emberly, E. and Kirczenow, G.: Electrical conductance of nanowires. Nanotechnology 10, 285 (1999).Google Scholar
Di Ventra, M., Pantelides, S.T., and Lang, N.D.: First-principles calculation of transport properties of a molecular device. Phys. Rev. Lett. 84, 979 (2000).Google Scholar
Durig, U., Zuger, O., Michel, B., Haussling, L., and Ringsdorf, H.: Electronic and mechanical characterization of self-assembled alkanethiol monolayers by scanning tunneling microscopy combined with interaction-force-gradient sensing. Phys. Rev. B: Condens. Matter Mater. Phys. 48, 1711 (1993).Google Scholar
Reed, M.A., Randall, J.N., Aggarwal, R.J., Matyi, R.J., Moore, T.M., and Wetsel, A.E.: Observation of discrete electronic states in a zero-dimensional semiconductor nanostructure. Phys. Rev. Lett. 60, 535 (1988).Google Scholar
Meirav, U., Kastner, M., and Wind, S.: Single-electron charging and periodic conductance resonances in GaAs nanostructures. Phys. Rev. Lett. 65, 771 (1990).Google Scholar
Dellow, M.W., Beton, P.H., Henini, M., Main, P.C., Eaves, L., Beaumont, S.P., and Wilkinson, C.D.W.: Gated resonant tunnelling devices. Electron. Lett. 27, 134 (1991).Google Scholar
Kouwenhoven, L.P., van der Vaart, N.C., Johnson, A.T., Kool, W., Harmans, C.J.P.M., Williamson, J.G., Staring, A.A.M., and Foxon, C.T.: Single electron charging effects in semiconductor quantum dots. Z. Phys. B: Condens. Matter 85, 367 (1991).CrossRefGoogle Scholar
Kouwenhoven, L.P., Johnson, A.T., Van der Vaart, N.C., Van der Enden, A., Harmans, C.J.P.M., and Foxon, C.T.: Quantized current in a quantum dot turnstile. Z. Phys. B: Condens. Matter 85, 381 (1991).CrossRefGoogle Scholar
Tewordt, M., Martín-Moreno, L., Law, V.J., Kelly, M.J., Newbury, R., Pepper, M., Ritchie, D.A., Frost, J.E.F., and Jones, G.A.C.: Resonant tunneling in an Al x Ga1−x As/GaAs quantum dot as a function of magnetic field. Phys. Rev. B: Condens. Matter Mater. Phys. 46, 3948 (1992).Google Scholar
Su, B., Goldman, V., and Cunningham, J.: Single-electron tunneling in nanometer-scale double-barrier heterostructure devices. Phys. Rev. B: Condens. Matter Mater. Phys. 46, 7644 (1992).Google Scholar
Klein, D.L., McEuen, P.L., Katari, J.E.B., Roth, R., and Alivisatos, A.P.: An approach to electrical studies of single nanocrystals. Appl. Phys. Lett. 68, 2574 (1996).Google Scholar
Black, C.T., Ralph, D.C., and Tinkham, M.: Spectroscopy of the superconducting gap in individual nanometer-scale aluminum particles. Phys. Rev. Lett. 76, 688 (1996).Google Scholar
Grabert, H., Martinis, J.M., and Devoret, M.H. eds.: Single Charge Tunneling (Plenum, New York, 1991).Google Scholar
Tour, J.M., Jones, L. II, Pearson, D.L., Lamba, J.J.S., Burgin, T.P., Whitesides, G.M., Allara, D.L., Parikh, A.N., and Atre, S.: Self-assembled monolayers and multilayers of conjugated thiols, alpha, omega-dithiols, and thioacetyl-containing adsorbates. Understanding attachments between potential molecular wires and gold surfaces. J. Am. Chem. Soc. 117, 9529 (1995).Google Scholar
Toyoda, K., Morimoto, K., and Morita, K.: First Principles study on current through a single π conjugate molecule through an organic/metal interface. Surf. Sci. 600, Elsevier, 50805083 (2006).Google Scholar
Basch, H., Cohen, R., and Ratner, M.A.: Interface geometry and molecular junction conductance: Geometric fluctuation and stochastic switching. Nano Lett. 5, 1668 (2005).Google Scholar
Kaur, R., Sawhney, R.S., and Engles, D.: Effect of gold electrode crystallographic orientations on charge transport through aromatic molecular junctions. Mol. Phys. 114, 22892298 (2016).Google Scholar
Xue, Y. and Ratner, M.A.: Microscopic study of electrical transport through individual molecules with metallic contacts. I. Band lineup, voltage drop, and high-field transport. Phys. Rev. B: Condens. Matter Mater. Phys. 68, 115407/118 (2003).Google Scholar
Ke, S-H., Baranger, H.U., and Yang, W.: Contact atomic structure and electron transport through molecules. J. Chem. Phys. 122, 074704 (2005).Google Scholar
Ke, S-H., Baranger, H.U., and Yang, W.: Molecular conductance: Chemical trends of anchoring groups. J. Am. Chem. Soc. 126, 1589 (2004).Google Scholar
Herdt, G.C. and Czanderna, A.W.: Metal overlayers on organic functional groups of self-organized molecular assemblies. V. Ion scattering spectroscopy and x-ray photoelectron spectroscopy of Ag/COOH interfaces. J. Vac. Sci. Technol., A 13, 12751280 (1995).Google Scholar
Jung, D.R. and Czanderna, A.W.: Chemical and physical interactions at metal/self-assembled organic monolayer interfaces. Crit. Rev. Solid State Mater. Sci. 191, 154 (1994).Google Scholar
Jung, D.R., Czanderna, A.W., and Herdt, G.C.: Interactions and penetration at metal/self-assembled organic monolayer interfaces. J. Vac. Sci. Technol., A 14, 17791787 (1996).CrossRefGoogle Scholar
Fisher, G.L., Hooper, A.E., Opila, R.L., Allara, D.L., and Winograd, N.: The interaction of vapor-deposited Al atoms with CO2H groups at the surface of a self-assembled alkanethiolate monolayer on gold. J. Phys. Chem. B 104, 32673273 (2000).Google Scholar
Fisher, G.L., Walker, A.V., Hooper, A.E., Tighe, T.B., Bahnck, K.B., Skriba, H.T., Reinard, M.D., Haynie, B.C., Opila, R.L., Winograd, N., and Allara, D.L.: Bond insertion, complexation, and penetration pathways of vapor-deposited aluminum atoms with HO- and CH3O-terminated organic monolayers. J. Am. Chem. Soc. 124, 55285541 (2002).Google Scholar
Konstadinidis, K., Zhang, P., Opila, R.L., and Allara, D.L.: An in-situ x-ray photoelectron study of the interaction between vapor-deposited Ti atoms and functional groups at the surfaces of self-assembled monolayers. Surf. Sci. 338, 300312 (1995).Google Scholar
Taylor, J., Brandbyge, M., and Stokbro, K.: Theory of rectification in tour wires: The role of electrode coupling. Phys. Rev. Lett. 89(13), 138301 (2002).CrossRefGoogle ScholarPubMed
Lang, N.D.: Resistance of atomic wires. Phys. Rev. B: Condens. Matter Mater. Phys. 52, 5335 (1995).Google Scholar
Xue, Y., Datta, S., and Ratner, M.A.: First-principles based matrix Green's function approach to molecular electronic devices: General formalism. Chem. Phys. 281, 151 (2002).Google Scholar
Brandbyge, M., Mozos, J-L., Ordejón, P., Taylor, J., and Stokbro, K.: Density-functional method for nonequilibrium electron transport. Phys. Rev. B: Condens. Matter Mater. Phys. 65, 165401 (2002).CrossRefGoogle Scholar
Taylor, J., Guo, H., and Wang, J.: Ab initio modeling of quantum transport properties of molecular electronic devices. Phys. Rev. B: Condens. Matter Mater. Phys. 63, 245407 (2001).Google Scholar
Rodrigues, V., Fuhrer, T., and Ugarte, D.: Signature of atomic structure in the quantum conductance of gold nanowires. Phys. Rev. Lett. 85, 4124 (2000).CrossRefGoogle ScholarPubMed
Reed, M.A., Zhou, C., Muller, C.J., Burgin, T.P., and Tour, J.M.: Conductance of a molecular junction. Science 278, 252254 (1997).Google Scholar
Kharlamov, A., Kharlamova, G., Bondarenki, M., and Fomenko, V.: Joint synthesis of small carbon molecules (C3–C11), quasi-fullerenes (C40, C48, C52) and their hydrides. Chem. Eng. Sci. 1(3), 3240 (2013).CrossRefGoogle Scholar
Leszczynski, J.: Handbook of Computational Chemistry (Springer, The Netherlands, 2012).Google Scholar
Balasubramanian, K.: Nuclear spin statistics of fullerene cages (C20–C40). Phys. Chem. 97(18), 46474658 (1993).Google Scholar
Dinca, M.F., Ciger, S., Stefu, M., Gherman, F., Miklos, K., Nagy, C.L., Ursu, O., and Diudea, M.V.: Stability prediction in C40 fullerenes. Carpathian J. Math. 20(2), 211 (2004).Google Scholar
Xiao, J., Lin, M., Chiu, Y-N., Fu, M., Lai, S-T., and Li, N.N.: The structures of fullerene C40 and its derivatives. J. Mol. Struct.: THEOCHEM 428(1–3), 149154 (1998).Google Scholar
Atomistic Toolkit Manual, Quantumwise Inc.Google Scholar
Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
Landauer, R.: Conductance determined by transmission: Probes and quantised constriction resistance. J. Phys.: Condens. Matter 1, 8099 (1989).Google Scholar
Chen, F. and Tao, N.J.: Electron transport in single molecules: From benzene to graphene. Acc. Chem. Res. 42(3), 429438 (2009).Google Scholar
Heurich, J., Cuevas, J.C., Wenzel, W., and Schön, G.: Electrical transport through single-molecule junctions: From molecular orbitals to conduction channels. Phys. Rev. Lett. 88, 256803 (2002).Google Scholar
Lawson, J.W. and Bauschlicher, C.W. Jr.: Transport in molecular junctions with different metallic contacts. Phys. Rev. B: Condens. Matter Mater. Phys. 74, 125401 (2006).CrossRefGoogle Scholar
Datta, S.: Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, UK, 1995).Google Scholar
Beebe, J.M., Kim, B., Gadzuk, J.W., Frisbie, C.D., and Kushmerick, J.G.: Transition from direct tunneling to field emission in metal–molecule–metal junctions. Phys. Rev. Lett. 97, 026801 (2006).Google Scholar
Beebe, J.M., Kim, B., Frisbie, C.D., and Kushmerick, J.G.: Measuring relative barrier heights in molecular electronic junctions with transition voltage spectroscopy. ACS Nano 2, 827 (2008).CrossRefGoogle ScholarPubMed
Kuwabara, T., Sugiyama, H., Yamaguchi, T., and Takahashi, K.: Inverted type bulk-heterojunction organic solar cell using electrodeposited titanium oxide thin films as electron collector electrode. Thin Solid Films 517, 3766 (2009).Google Scholar
Paulsson, M. and Datta, S.: Thermoelectric effect in molecular electronics. Phys. Rev. B: Condens. Matter Mater. Phys. 67(24), 241403 (2003).Google Scholar
Cukier, E. and Cave, R.J.: Are hydrogen bonds unique among weak interactions in their ability to mediate electronic coupling? Chem. Phys. Lett. 402(1–3), 186191 (2005).Google Scholar
Kaur, R.P., Sawhney, R.S., and Engles, D.: Halogen doped aromatic molecular junctions in ultra-small functional nanoelectronic devices. Journal of Nanoenergy and Power Research (2016), in press.Google Scholar
Bâldea, I.: Counterintuitive issues in the charge transport through molecular junctions. Phys. Chem. Chem. Phys. 17, 31260 (2015).Google Scholar
Capozzi, B., Xia, J., Adak, O., Dell, E.J., Liu, Z-F., Taylor, J.C., Neaton, J.B., Campos, L.M., and Venkataraman, L.: Single-molecule diodes with high rectification ratios through environmental control. Nat. Nanotechnol. 10, 522527 (2015).Google Scholar
Aviram, A. and Ratner, M.A.: Molecular rectifiers. Chem. Phys. Lett. 29, 277283 (1974).Google Scholar
Kaur, R.P., Sawhney, R.S., and Engles, D.: Augmenting Molecular Junctions with different transition metal contacts. J. Multiscale Modell. 5(2), 1350009 (2014).Google Scholar
Galperin, M., Nitzan, A., and Ratner, M.a.: Inelastic effects in molecular junctions in the Coulomb and Kondo regimes: Nonequilibrium equation-of-motion approach. Phys. Rev. B: Condens. Matter Mater. Phys. 76, 035301 (2007).CrossRefGoogle Scholar
Tada, T., Nozaki, D., Kondo, M., Hamayama, S., and Yoshizawa, K.: Oscillations of conductance in molecular junctions of carbon ladder compounds. J. Am. Chem. Soc. 126, 1418214189 (2004).Google Scholar
Andrews, D.Q., Cohen, R., Van Duyne, R.P., and Ratner, M.A.: Single molecule electron transport junctions: Charging and geometric effects on conductance. J. Chem. Phys. 125, 174718 (2006).Google Scholar
Tian, W., Datta, S., Hong, S., Reifenberger, R., Henderson, J.I., and Kubia, C.P.: Conductance spectra of molecular wires. J. Chem. Phys. 109, 2874 (1998).CrossRefGoogle Scholar
Ohno, T.R., Chen, Y., Harvey, S.E., Kroll, G.H., Weaver, J.H., Haufler, R.E., and Smalley, R.E.: C60 bonding and energy-level alignment on metal and semiconductor surfaces. Phys. Rev. B: Condens. Matter Mater. Phys. 44, 13747 (1991).Google Scholar