Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T22:59:50.008Z Has data issue: false hasContentIssue false

Electrical and mechanical properties of free-standing PMMA–MMT clay composites

Published online by Cambridge University Press:  12 November 2014

Syed Abusale Mhamad Nabirqudri
Affiliation:
Department of Materials Science, Gulbarga University, Gulbarga 585106, India Department of Mechanical, KBN College of Engineering, Gulbarga 585104, Karnataka, India
Aashis S. Roy
Affiliation:
Department of Materials Science, Gulbarga University, Gulbarga 585106, India
M.V.N. Ambika Prasad*
Affiliation:
Department of Materials Science, Gulbarga University, Gulbarga 585106, India
*
a)Address all correspondence to this author. e-mail: prasad1_amb@rediffmail.com
Get access

Abstract

Modified MMT clay-doped PMMA composites have been prepared by solvent casting method for different weight percentages. The prepared composite films were characterized by FTIR and SEM. Also, the DC conductivity was carried out for PMMA and PMMA composite films. Among all composites, it was found that 30 wt% shows highest conductivity of 1.59 × 10−3 S/cm. The negative thermal coefficient behavior of these polymer composite films confirms that the increase in conductivity is due to the elongation of polymer chain which helps in charge transport mechanism. Dielectric study also shows that 30 wt% has the lowest dielectric constant and dielectric loss of 2.5 and 3.3, respectively, resulting in an increase in conductivity of 5 × 10−3 S/cm. The isotropic nature of 30 wt% composite film shows a high quality factor of 0.005 because of overdamping of electron at 104 Hz. Cole–cole plots show that the semi arc originated from a single point and its area decreases with filler concentration up to 30 wt% due to drop in the electrical resistance. Tensile modulus increases because of high MMT aspect ratio and distribution ratio. The 30 wt% of the composite shows high tensile strength at 55 MPa which induces 8% of strain in the PMMA–MMT clay composite films. Therefore, these composite films can be used in many sensor and solar technologies as encapsulation materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Mehendru, P.C., Kumar, N., Arora, V.P., and Gupta, N.P.: Dielectric relaxation studies in polyvinyl butyral. J. Chem. Phys. 77, 4232 (1982).Google Scholar
Roy, M., Nelson, J.K., MacCrone, R.K., Schadler, L.S., Reed, C.W., Keefe, R., and Zenger, W.: Dielectric spectroscopy of epoxy resin with and without inorganic nanofillers. IEEE Trans. Dielectr. Electr. Insul. 12, 629 (2005).CrossRefGoogle Scholar
Xiang, Z.D., Chen, T., Li, Z.M., and Bian, X.C.: Negative temperature coefficient of resistivity in lightweight conductive carbon nanotube/polymer composites. Macromol. Mater. Eng. 294, 91 (2009).CrossRefGoogle Scholar
Padalia, D., Bisht, G., Johri, U.C., and Asokan, K.: Fabrication and characterization of cerium doped barium titanate/PMMA nanocomposites. Solid State Sci. 19, 122 (2013).CrossRefGoogle Scholar
Wong, C.P. and Bollampally, R.S.: Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging. J. Appl. Polym. Sci. 74, 3396 (1999).Google Scholar
Miyasaka, K., Watanabe, K., Jojima, E., Aida, H., Sumita, M., and Ishikawa, K.: Electrical properties of carbon black-polyethylene composites. J. Mater. Sci. 17, 1610 (1982).Google Scholar
Nshuti, C.M., Songtipya, P., Manias, E., Gasco, M.M.J., Hossenlopp, J.M., and Wilkie, C.A.: Polymer nanocomposites using zinc aluminum and magnesium aluminum oleate layered double hydroxides: Effects of LDH divalent metals on dispersion, thermal mechanical and fire performance in various polymers. Polymer 50, 3564 (2009).CrossRefGoogle Scholar
Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Fukushima, Y., and Kurauchi, T.T.: Synthesis of nylon 6–clay hybrid by montmorillonite intercalated with ϵ-caprolactam. J. Polym. Sci., Part A: Polym. Chem. 31, 983 (1993).CrossRefGoogle Scholar
Vaia, R.A., Ishii, H., and Giannelis, E.P.: Synthesis and properties of two-dimensional nanostructures by direct intercalation of polymer melts in layered silicates. Chem. Mater. 5, 1694 (1993).CrossRefGoogle Scholar
Vaia, R.A., Jandt, K.D., Kramer, E.J., and Giannelis, E.P.: Kinetics of polymer melt intercalation. Macromolecules 28, 8080 (1995).Google Scholar
Okada, A. and Usuki, A.: Twenty years of polymer-clay nanocomposites. Macromol. Mater. Eng. 291, 1449 (2006).Google Scholar
Sinha Ray, S. and Okamoto, M.: Polymer/layered silicate nanocomposites: A review from preparation to processing. Prog. Polym. Sci. 28, 1539 (2003).Google Scholar
Zhang, J., Manias, E., and Wilkie, C.A.J.: Polymerically modified layered silicates. Nanosci. Nanotechnol. 8, 1597 (2008).Google Scholar
Lincoln, D.M., Vaia, R.A., Wang, Z.G., Hsiao, B.S., and Krishnamoorti, R.: Temperature dependence of polymer crystalline morphology in nylon 6/montmorillonite nanocomposites. Polymer 42, 9975 (2001).CrossRefGoogle Scholar
Roy, A.S., Gupta, S., Sindhu, S., Parveen, A., and Ramamurthy, P.C.: Dielectric properties of novel PVA/ZnO hybrid nanocomposite films. Composites, Part B 47, 314 (2013).Google Scholar
Chen, W. and Qu, B.: In situ synthesis of poly(methyl methacrylate)/MgAl layered double hydroxide nanocomposite with high transparency and enhanced thermal properties. Chem. Mater. 15, 3208 (2003).Google Scholar
Han Sae, J. and Eung Soo, K.: Dependence of microwave dielectric properties on Al2O3 filler of polyvinyl butyral-matrix composites. Ferroelectrics 434, 10 (2012).Google Scholar
Senthil, V., Badapanda, T., Kumar, S.N., Kumar, P., and Panigrahi, S.: Relaxation and conduction mechanism of PVA: BYZT polymer composites by impedance spectroscopy. J. Polym. Res. 19, 9838 (2012).Google Scholar
Roy, A.S., Gupta, S., Sindhu, S., Madras, G., and Ramamurthy, P.C.: Impedance spectroscopy of novel hybrid composite films of polyvinylbutyral (PVB)/functionalized mesoporous silica. Composites, Part B 58, 134 (2014).CrossRefGoogle Scholar
Bouropoulos, N., Psarras, G.C., Moustakas, N., Chrissanthopoulos, A., and Baskoutas, S.: Optical and dielectric properties of ZnO-PVA nanocomposites. Phys. Status Solidi A 205, 2033 (2008).CrossRefGoogle Scholar
Singha, S., Thomas, M.J., and Kulkarni, A.: Complex permittivity characteristics of epoxy nanocomposites at low frequencies. IEEE Trans. Dielectr. Electr. Insul. 17, 1249 (2010).Google Scholar
Roy, A., Parveen, A., Deshpande, R., Bhat, R., and Koppalkar, A.: Microscopic and dielectric studies of ZnO nanoparticles loaded in orthochloropolyaniline nanocomposites. J. Nanopart. Res. 15, 1337 (2013).Google Scholar
Roy, A.S., Koppalkar, A.R., and Ambika Prasad, M.V.N.: Studies of AC conductivity and dielectric relaxation behavior of CdO-doped nanometric polyaniline. J. Appl. Polym. Sci. 123, 1928 (2012).Google Scholar
Kontos, G.A., Soulintzis, A.L., Karahaliou, P.K., Psarras, G.C., Georga, S.N., krontiras, C.A., and Pisanias, M.N.: Electrical relaxation dynamics in TiO2 – polymer matrix composites. Express Polym. Lett. 1, 781 (2007).Google Scholar
Raghavendra, S.C., Khasim, S., Revanasiddappa, M., Ambika Prasad, M.V.N., and Kulkarni, A.B.: Synthesis, characterization and low frequency a.c. conduction of polyaniline/fly ash composites. Bull. Mater. Sci. 26, 733 (2003).Google Scholar
Roy, A.S., Gupta, S., Sindhu, S., Ramamurthy, P.C., and Madras, G.: Fabrication of poly(vinylidene chloride-co-vinyl chloride)/TiO2 nanocomposite films and their dielectric properties. Sci. Adv. Mater. 6, 1 (2014).CrossRefGoogle Scholar
Chang, J.H., An, Y.U., Cho, D., and Giannelis, E.P.: Poly(lactic acid) nanocomposites: Comparison of their properties with montmorillonite and synthetic mica. Polymer 44, 3715 (2003).Google Scholar
Rogers, K., Takacs, E., and Thompson, M.R.: Contact angle measurement of select compatibilizers for polymer-silicate layer nanocomposites. Composites, Part B 24, 423 (2005).Google Scholar
Yin, Y., Xu, X., Xia, C., Ge, X., and Zhang, Z.: Synthesis and crystal structure of a bis(phosphiren-1-yl)–iron complex. Chem. Commun. 8, 941 (1998).Google Scholar
Sayo, K., Deki, S., and Hayashi, S.: A novel method of preparing nano-sized gold and palladium particles dispersed in composites that uses the thermal relaxation technique. Eur. Phys. J. D 9, 429 (1999).CrossRefGoogle Scholar
Corbierre, M.K., Cameron, S., and Lennox, R.B.: Polymer-stabilized gold nanoparticles with high grafting densities. Langmuir 20, 2867 (2004).CrossRefGoogle ScholarPubMed
Yen, C.C., Chang, T.C., and Kakinoki, H.: Gel spinning of poly(vinyl alcohol) from dimethyl sulfoxide/water mixture. J. Appl. Polym. Sci. 40, 53 (1990).CrossRefGoogle Scholar
Hussain, I., Brust, M., Papworth, A.J., and Cooper, A.I.: Preparation of acrylate-stabilized gold and silver hydrosols and gold-polymer composite films. Langmuir 19, 4831 (2003).Google Scholar
Mayer, A.B.R. and Mark, J.E.: Palladium and platinum nanocatalysts protected by amphiphilic block copolymers. Eur. Polym. J. 34, 103 (1998).Google Scholar
Kumar, R.V., Koltypin, Y., Cohen, Y.S., Aurbach, D., Palchik, O., Felner, I., and Gedanken, A.: Preparation of amorphous magnetite nanoparticles embedded in polyvinyl alcohol using ultrasound radiation. J. Mater. Chem. 10, 1125 (2000).Google Scholar
Strawhecker, K.E. and Manias, E.: Structure and properties of poly(vinyl alcohol)/Na+ montmorillonite nanocomposites. Chem. Mater. 12, 2943 (2000).Google Scholar
Lim, M.H. and Ast, D.G.: Free-standing thin films containing hexagonally organized silver nanocrystals in a polymer matrix. Adv. Mater. 13, 718 (2001).Google Scholar
Huang, X. and Brittain, W.J.: Synthesis and characterization of PMMA nanocomposites by suspension and emulsion polymerization. Macromolecules 34, 3255 (2001).Google Scholar
Manna, S., Batabyal, S.K., and Nandi, A.K.: Preparation and characterization of silver-poly(vinylidene fluoride) nanocomposites: Formation of piezoelectric polymorph of poly(vinylidene fluoride). J. Phys. Chem. B 110, 12318 (2006).Google Scholar
Jewrajka, S.K. and Chatterjee, U.: Block copolymer mediated synthesis of amphiphilic gold nanoparticles in water and an aqueous tetrahydrofuran medium: An approach for the preparation of polymer–gold nanocomposites. J. Polym. Sci. Polym. Chem. 44, 1841 (2006).CrossRefGoogle Scholar