Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T14:16:41.276Z Has data issue: false hasContentIssue false

Elastic properties of sodium borovanadate glasses

Published online by Cambridge University Press:  03 March 2011

S. Muthupari
Affiliation:
Materials Research Centre. Indian Institute of Science, Bangalore, India
S. Lakshmi Raghavan
Affiliation:
Materials Research Centre. Indian Institute of Science, Bangalore, India
K.J. Rao*
Affiliation:
Materials Research Centre. Indian Institute of Science, Bangalore, India
*
a)Address all correspondence to this author
Get access

Abstract

The elastic properties of sodium borovanadate glasses have been studied over a wide range of composition using ultrasonic measurements. It is found that variation of different elastic moduli is very similar in any given series of composition. The bulk and shear moduli show a monotonic variation with the covalent bond energy densities calculated from the proposed structural model for these glasses. The bulk moduli also vary as a negative power function of the mean atomic volume. The Debye temperature varies linearly with the glass transition temperature. The implications of the observed behavior have been discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Bridge, B., Patel, N.D., and Waters, D.N., Phys. Status. Solidi (A) 77, 655 (1983).CrossRefGoogle Scholar
2Oilroy, K. S. and Philips, W.A., Philos. Mag. B 47, 655 (1983).Google Scholar
3Bogue, R. and Sladek, R.J., Phys. Rev. B 42, 5280 (1990).CrossRefGoogle Scholar
4Damodaran, K. V., Selvaraj, U., and Rao, K.J., Mater. Res. Bull. 23, 151 (1988).CrossRefGoogle Scholar
5Damodaran, K.V. and Rao, K.J., J. Am. Ceram. Soc. 72, 533 (1989).CrossRefGoogle Scholar
6Damodaran, K.V. and Rao, K.J., Phys. Chem. Glasses 30, 130 (1989).Google Scholar
7Muthupari, S., Prabakar, S., and Rao, K.J., J. Phys. Chem. 98, 2646 (1994).CrossRefGoogle Scholar
8Muthupari, S. and Rao, K.J., Chem. Phys. Lett. 223, 133 (1994).CrossRefGoogle Scholar
9Ashcroft, N. W. and Mermin, N. D., Solid State Physics (Holt-Saunders International, Tokyo, 1981), p. 458.Google Scholar
10Rao, K.J. and Rao, C.N.R., Mater. Res. Bull. 17, 1337 (1982).CrossRefGoogle Scholar
11Rao, K.J., Proc. Indian Acad. Sci. (Chem. Sci.) 93, 389 (1984).CrossRefGoogle Scholar
12Borate glasses: Structure, Properties and Applications, Pye, L. D., Frechette, V. D., and Kreidl, N. J. (Plenum Press, New York, 1978).CrossRefGoogle Scholar
13Uy, O.M. and Drowart, J., High Temp. Sci. 2, 293 (1970).Google Scholar
14Brewer, L. and Rosenblatt, G.M., Adv. High Temp. Sci. 2, 1 (1969).Google Scholar
15Balasubramanian, S., Damodaran, K.V., and Rao, K.J., Chem. Phys. 166, 131 (1992).CrossRefGoogle Scholar
16Ota, R., Takahashi, K., and Arioshi, K., J. Non-Cryst. Solids 70, 243 (1985).Google Scholar
17Soga, N., Kunugi, M., and Ota, R., J. Phys. Chem. Solids 34, 2143 (1973).CrossRefGoogle Scholar
18Merz, M.D., Allen, R.P., and Dahlgren, S.D., J. Appl. Phys. 45, 4126 (1974).CrossRefGoogle Scholar
19Anderson, O. L. and Nafe, J. E., J. Geophys. Res. 70, 3951 (1965).CrossRefGoogle Scholar