Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T14:43:49.078Z Has data issue: false hasContentIssue false

Elastic interaction between a moving screw dislocation and a surface crack

Published online by Cambridge University Press:  03 March 2011

Yu-Zen Tsai
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30043, Taiwan, Republic of China
C.T. Hu
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30043, Taiwan, Republic of China
Sanboh Lee
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30043, Taiwan, Republic of China
Get access

Abstract

A moving screw dislocation near a surface crack was investigated using dislocation modeling. Motion directions parallel (x direction) and perpendicular (y direction) to the crack surface were considered. Due to the free surface, the net Burgers vector inside the crack is zero. After obtaining the dislocation distribution in the crack, we calculated the stress field in the medium. Relative to a static screw dislocation, the magnitude of σyz due to the moving screw dislocation decreases with increasing velocity Vx. Generally, the effect of dislocation shielding on fracture is reduced if the velocity Vx increases. The magnitude of the image force of the dislocation also decreases with increasing velocity Vx. The effect of velocity along the y direction on the stress intensity factor and image force has the opposite trend to that along the x direction. The present result can reduce to a moving dislocation near a semi-infinite crack and a static dislocation near a surface crack.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Rice, J. R. and Thomson, R., Philos. Mag. 29, 73 (1974).CrossRefGoogle Scholar
2Shiue, S. T. and Lee, S., Eng. Fract. Mech. 22, 1105 (1985).Google Scholar
3Majumdar, B. S. and Burns, S. J., Acta Metall. 29, 579 (1981).CrossRefGoogle Scholar
4Juang, R. R. and Lee, S., J. Appl. Phys. 59, 3421 (1986).CrossRefGoogle Scholar
5Chu, S. N. G., J. Appl. Phys. 53, 8678 (1982).CrossRefGoogle Scholar
6Eringen, A. C., J. Appl. Phys. 54, 6811 (1983).CrossRefGoogle Scholar
7Kirchner, H. O. K. and Michot, G., Mater. Sci. Eng. 79, 169 (1986).CrossRefGoogle Scholar
8Eshelby, J. D., Phys. Rev. 90, 248 (1953).CrossRefGoogle Scholar
9Stroh, A. N., Phys. Rev. 128, 55 (1962).CrossRefGoogle Scholar
10Nabarro, F. R. N., Philos. Mag. 6, 1261 (1961).CrossRefGoogle Scholar
11Lothe, J., Phys. Rev. 122, 78 (1961).CrossRefGoogle Scholar
12Weertman, J., in Response of Metals to High Velocity Deformation, edited by Shewmon, P. G. and Zackay, V.F. (Interscience, New York, 1961), p. 205.Google Scholar
13Weertman, J. and Weertman, J. R., Dislocation in Solids, edited by Nabarro, F.R.N. (North-Holland, Amsterdam, 1980), Chap. 8.Google Scholar
14Lund, F., Phys. Rev. Lett. 54, 14 (1985).CrossRefGoogle Scholar
15Lund, F., J. Mater. Res. 3, 280 (1988).CrossRefGoogle Scholar
16Lin, I. H. and Thomson, R., Acta Metall. 34, 187 (1986).CrossRefGoogle Scholar
17Brock, L. M., J. Mech. Phys. Solids, 37, 47 (1989).CrossRefGoogle Scholar
18Zhao, R. H., Dai, S. H., and Li, J. C. M., Int. J. Fract. 29, 3 (1985).CrossRefGoogle Scholar
19Zhao, R. H. and Li, J.C.M., J. Appl. Phys. 58, 4117 (1985).CrossRefGoogle Scholar
20Huang, C. C., Lee, S., and Yu, C. C., Phys. Status Solidi (a) 140, 369 (1994).CrossRefGoogle Scholar
21Huang, C. C., Yu, C. C., and Lee, S., J. Mater. Res. 10, 183 (1995).CrossRefGoogle Scholar
22Tsai, Y. Z. and Lee, S., J. Appl. Phys. 72, 2164 (1992).CrossRefGoogle Scholar
23Muskhelishvili, N. I., Singular Integral Equations (Noordhoff, Groningen, 1953).Google Scholar
24Frank, F. C., Proc. Phys. Soc. (London) 62A, 131 (1949).CrossRefGoogle Scholar
25Feynman, R. P., Leighton, R. B., and Sands, M., The Feynman Lectures on Physics (1964) (Addison-Wesley, Reading, MA), Vol. 2, Chap. 26.Google Scholar
26Nabarro, F. R. N., Proc. R. Soc. London 209A, 278 (1951).Google Scholar
27Bilby, B. A., Cottrell, A. H., and Swinden, K.H., Proc. R. Soc. London 272A, 304 (1963).Google Scholar
28Ohr, S. M., J. Mater. Sci. Eng. 72, 1 (1985).CrossRefGoogle Scholar
29Majumdar, B. S. and Burns, S. J., Int. J. Fracture 21, 229 (1983).CrossRefGoogle Scholar
30Chang, S. J. and Ohr, S. M., J. Appl. Phys. 52, 7174 (1981).CrossRefGoogle Scholar
31Chang, S. J. and Ohr, S. M., J. Appl. Phys. 53, 5645 (1982).Google Scholar