Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-25T21:52:51.774Z Has data issue: false hasContentIssue false

Elastic anomaly and internal friction of Ba0.5Sr0.5Co0.8Fe0.2O3-δ and La0.58Sr0.4Co0.2Fe0.8O3-δ

Published online by Cambridge University Press:  10 June 2011

Bingxin Huang
Affiliation:
Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
Jürgen Malzbender*
Affiliation:
Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
Rolf W. Steinbrech
Affiliation:
Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
*
a)Address all correspondence to this author. e-mail: j.malzbender@fz-juelich.de
Get access

Abstract

Elastic modulus and internal friction of Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) and La0.58Sr0.4Co0.2Fe0.8O3-δ (LSCF) were determined from resonance frequencies and damping behavior, respectively, using an impulse excitation method. An elastic anomaly for BSCF around 476 K, with a corresponding peak in the internal friction, is attributed to the experimentally confirmed spin transition of Co3+. LSCF is in a ferromagnetic state below ∼220 K and in a paramagnetic state above ∼250 K. The elastic modulus of LSCF exhibits an anomaly between 473 and 1113 K, which is attributed to a transition from rhombohedral to cubic symmetry.

Type
Materials Communications
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Sunarso, J., Baumann, S., Serra, J.M., Meulenberg, W.A., Liu, S., Lin, Y.S., and Diniz da Costa, J.C.: Mixed ionic-electronic conducting (MIEC) ceramic-based membranes for oxygen separation. J. Membr. Sci. 320, 13 (2008).CrossRefGoogle Scholar
2.Cheng, J.H., Navrotsky, A., Zhou, X.D., and Anderson, H.U.: Thermochemistry of La1-xSrxFeO3-δ solid solutions (0.0 <= x <= 1.0, 0.0 <= δ <= 0.5). Chem. Mater. 17, 2197 (2005).CrossRefGoogle Scholar
3.Buchler, O., Serra, J.M., Meulenberg, W.A., Sebold, D., and Buchkremer, H.P.: Preparation and properties of thin La1-xSrxCo1-yFeyO3-δ perovskitic membranes supported on tailored ceramic substrates. Solid State Ion 178, 91 (2007).CrossRefGoogle Scholar
4.Huang, B.X., Malzbender, J., Steinbrech, R.W., Grychtol, P., Schneider, C.M., and Singheiser, L.: Anomalies in the thermomechanical behavior of Ba0.5Sr0.5Co0.8Fe0.2O3-δ ceramic oxygen conductive membranes at intermediate temperatures. Appl. Phys. Lett. 95, 051901 (2009).CrossRefGoogle Scholar
5.Huang, B.X., Malzbender, J., Steinbrech, R.W., and Singheiser, L.: Mechanical properties of La0.58Sr0.4Co0.2Fe0.8O3-δ membranes. Solid State Ion 180, 241 (2009).CrossRefGoogle Scholar
6.Zheng, R.K., Tang, A.N., Yang, Y., Wang, W., Li, G., Li, X.G., and Ku Transport, H.C.: magnetic, specific heat, internal friction, and shear modulus in the charge ordered La0.25Ca0.75MnO3 manganite. J. Appl. Phys. 94, 514 (2003).CrossRefGoogle Scholar
7.Bhalla, A.S., Guo, R.Y., and Roy, R.: The perovskite structure—a review of its role in ceramic science and technology. Mater. Res. Innovations 4, 3 (2000).CrossRefGoogle Scholar
8.Radaelli, P.G. and Cheong, S.W.: Structural phenomena associated with the spin-state transition in LaCoO3. Phys. Rev. B 66, 094408 (2002).CrossRefGoogle Scholar
9.Ravindran, P., Korzhavyi, P.A., Fjellvag, H., and Kjekshus, A.: Electronic structure, phase stability, and magnetic properties of La1-xSrxCoO3 from first-principles full-potential calculations. Phys. Rev. B 60, 16423 (1999).CrossRefGoogle Scholar
10.Wu, X.S., Zuo, Y.B., Li, J.H., Chen, C.S., and Liu, W.: Low-frequency internal friction study of phase transitions in La1/3Sr2/3FeO3-δ ceramics. J. Alloy. Comp. 462, 432 (2008).CrossRefGoogle Scholar
11.Yamaguchi, S., Okimoto, Y., Taniguchi, H., and Tokura, Y.: Spin-state transition and high-spin polarons in LaCoO3. Phys. Rev. B 53, R2926 (1996).CrossRefGoogle ScholarPubMed
12.Swarnakar, A.K., Gimenez, S., Salehi, S., Vleugels, J., and Van der Biest, O.: Recent advances in material characterization using the impulse excitation technique (IET). Key Eng. Mater. 333, 235 (2007).CrossRefGoogle Scholar
13.Du, J., Sun, Y., Jiang, J., Zeng, F., and Yin, H.: Internal friction and Youngs modulus in the Bi(Pb)-Sr-Ca-Cu-O superconductor. Phys. Rev. B 41, 6679 (1990).Google Scholar
14.Giraud, S. and Canel, J.: Young’s modulus of some SOFCs materials as a function of temperature. J. Eur. Ceram. Soc. 28, 77 (2008).CrossRefGoogle Scholar