Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T11:47:50.308Z Has data issue: false hasContentIssue false

The effects of tensile plastic deformation on the hardness and Young’s modulus of a bulk nanocrystalline alloy studied by nanoindentation

Published online by Cambridge University Press:  03 March 2011

G.J. Fan*
Affiliation:
Department of Materials Science and Engineering, The University of Tennessee, Knoxville, Tennessee 37996
W.H. Jiang
Affiliation:
Department of Materials Science and Engineering, The University of Tennessee, Knoxville, Tennessee 37996
F.X. Liu
Affiliation:
Department of Materials Science and Engineering, The University of Tennessee, Knoxville, Tennessee 37996
H. Choo
Affiliation:
Department of Materials Science and Engineering, The University of Tennessee, Knoxville, Tennessee 37996
P.K. Liaw
Affiliation:
Department of Materials Science and Engineering, The University of Tennessee, Knoxville, Tennessee 37996
B. Yang
Affiliation:
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, People’s Republic of China
L.F. Fu
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, Davis, California 95616
N.D. Browning
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, Davis, California 95616; and Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550
*
a) Address all correspondence to this author. e-mail: gfan@utk.edu
Get access

Abstract

A bulk nanocrystalline (nc) Ni–Fe alloy was subjected to tensile deformation, which leads to grain growth. The nanoindentation study indicates that the hardness, H, and Young’s modulus, E, of the nc alloy before and after tensile deformation did not show a clear indentation-rate effect. However, the tensile deformation results in a decrease in the E values of about 15%, which might be attributed to the grain rotation, leading to texture development during the stress-induced grain growth.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Oliver, W.C. and Pharr, G.M.: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 (2004).CrossRefGoogle Scholar
2Kumar, K.S., Van Swygenhoven, H., and Suresh, S.: Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 51, 5743 (2003).CrossRefGoogle Scholar
3Nieh, T.G. and Wadsworth, J.: Hall-Petch relation in nanocrystalline solids. Scripta Metall. Mater. 25, 955 (1991).CrossRefGoogle Scholar
4Schiotz, J., Di Tolla, F.D., and Jacobsen, K.W.: Softening of nanocrystalline metals at very small grain sizes. Nature 391, 561 (1998).CrossRefGoogle Scholar
5Van Swygenhoven, H. and Derlet, P.M.: Grain-boundary sliding in nanocrystalline fcc metals. Phys. Rev. B: Condens. Matter 64, 224105 (2001).CrossRefGoogle Scholar
6Wolf, D., Yamakov, V., Phillpot, S.R., Mukherjee, A., and Gleiter, H.: Deformation of nanocrystalline materials by molecular-dynamics simulation: relationship to experiments? Acta Mater. 53, 1 (2005).CrossRefGoogle Scholar
7Fan, G.J., Choo, H., Liaw, P.K., and Lavernia, E.J.: Strength softening and stress relaxation of nanostructured materials. Metall. Trans. A 36, 2641 (2005).CrossRefGoogle Scholar
8Schuh, C.A., Nieh, T.G., and Iwasaki, H.: The effect of solid solution W additions on the mechanical properties of nanocrystalline Ni. Acta Mater. 51, 431 (2003).CrossRefGoogle Scholar
9Schwaiger, R., Moser, B., Dao, M., Chollacoop, N., and Suresh, S.: Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel. Acta Mater. 51, 5159 (2003).CrossRefGoogle Scholar
10Yang, F.Q., Du, W.W., and Okazaki, K.: Effect of cold rolling on the indentation deformation of AA6061 aluminum alloy. J. Mater. Res. 20, 1172 (2005).CrossRefGoogle Scholar
11Van Vliet, K.J., Tsikata, S., and Suresh, S.: Model experiments for direct visualization of grain boundary deformation in nanocrystalline metals. Appl. Phys. Lett. 83, 1441 (2003).CrossRefGoogle Scholar
12Wang, Y.M., Hodge, A.M., Biener, J., Hamza, A.V., Barnes, D.E., Liu, K., and Nieh, T.G.: Deformation twinning during nanoindentation of nanocrystalline Ta. Appl. Phys. Lett. 86, 101915 (2005).CrossRefGoogle Scholar
13Zhang, M., Yang, B., Chu, J., and Nieh, T.G.: Hardness enhancement in nanocrystalline tantalum thin films. Scripta Mater. 54, 1227 (2006).CrossRefGoogle Scholar
14Jiang, W.H. and Atzmon, M.: Rate dependence of serrated flow in a metallic glass. J. Mater. Res. 18, 755 (2003).CrossRefGoogle Scholar
15Zhang, K., Weertman, J.R., and Eastman, J.A.: The influence of time, temperature, and grain size on indentation creep in high-purity nanocrystalline and ultrafine grain copper. Appl. Phys. Lett. 85, 5197 (2004).CrossRefGoogle Scholar
16Jin, M., Minor, A.M., Stach, E.A., and Morris, J.W.: Direct observation of deformation-induced grain growth during the nanoindentation of ultrafine-grained Al at room temperature. Acta Mater. 52, 5381 (2004).CrossRefGoogle Scholar
17Fan, G.J., Wang, Y.D., Fu, L.F., Choo, H., Liaw, P.K., Ren, Y., and Browning, N.D.: Orientation-dependent grain growth in a bulk nanocrystalline alloy during the uniaxial compressive deformation. Appl. Phys. Lett. 88, 171914 (2006).CrossRefGoogle Scholar
18Liao, X.Z., Kilmametov, A.R., Valiev, R.Z., Gao, H.S., Li, X.D., Mukherjee, A.K., Bingert, J.F., and Zhu, Y.T.: High-pressure torsion-induced grain growth in electrodeposited nanocrystalline Ni. Appl. Phys. Lett. 88, 021909 (2006).CrossRefGoogle Scholar
19Gianola, D.S., Petegem, S.V., Legros, M., Brandstetter, S., Van Swygenhoven, H., and Hemker, K.J.: Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films. Acta Mater. 54, 2253 (2006).CrossRefGoogle Scholar
20Fan, G.J., Fu, L.F., Qiao, D.C., Choo, H., Liaw, P.K., and Browning, N.D.: Grain growth in a bulk nanocrystalline Co alloy during tensile plastic deformation. Scripta Mater. 54, 2137 (2006).CrossRefGoogle Scholar
21Fan, G.J., Fu, L.F., Choo, H., Liaw, P.K., and Browning, N.D.: Uniaxial tensile plastic deformation and grain growth of bulk nanocrystalline alloys. Acta Mater. 54, 4781 (2006).CrossRefGoogle Scholar
22Fan, G.J., Fu, L.F., Wang, Y.D., Ren, Y., Choo, H., Liaw, P.K., Wang, G.Y., and Browning, N.D.: Uniaxial tensile plastic deformation of a bulk nanocrystalline alloy studied by a high-energy x-ray diffraction technique. Appl. Phys. Lett. 89, 101918 (2006).CrossRefGoogle Scholar
23Chen, J., Shi, Y.N., and Lu, K.: Strain rate sensitivity of a nanocrystalline Cu-Ni-P alloy. J. Mater. Res. 20, 2955 (2005).CrossRefGoogle Scholar
24Pan, D., Nieh, T.G., and Chen, M.W.: Strengthening and softening of nanocrystalline nickel during multistep nanoindentation. Appl. Phys. Lett. 88, 161922 (2006).CrossRefGoogle Scholar
25Hertzberg, R.: Deformation and Fracture Mechanics of Engineering Materials 4th ed. (Wiley, New York, NY, 1996) p. 6.Google Scholar
26Legros, M., Elliott, B.R., Rittner, M.N., Weertman, J.R., and Hemker, K.J.: Microsample tensile testing of nanocrystalline metals. Philos. Mag. A 80, 1017 (2000).CrossRefGoogle Scholar
27Sanders, P., Youngdahl, C.P., and Weertman, J.R.: The strength of nanocrystalline metals with and without flaws. Mater. Sci. Eng., A 234–236, 77 (1997).CrossRefGoogle Scholar
28Huang, H. and Spaepen, F.: Tensile testing of free-standing Cu, Ag and Al thin films and Ag/Cu multilayers. Acta Mater. 48, 3261 (2000).CrossRefGoogle Scholar
29Zhou, Y., Erb, U., Aust, K.T., and Palumbo, G.: Young’s modulus in nanostructured metals. Z. Metallkd. 94, 1157 (2003).CrossRefGoogle Scholar
30Zeng, X.H. and Ericsson, T.: Anisotropy of elastic properties in various aluminium-lithium sheet alloys. Acta Mater. 44, 1801 (1996).CrossRefGoogle Scholar
31Park, Y.B., Lee, D.N., and Gottstein, G.: The evolution of recrystallization textures in body centred cubic metals. Acta Mater. 10, 3371 (1998).CrossRefGoogle Scholar
32Hurley, D.C., Geiss, R.H., Kopycinska-Muller, M., Muller, J., Read, D.T., Wright, J.E., Jennett, N.M., and Maxwell, A.S.: Anisotropic elastic properties of nanocrystalline nickel thin films. J. Mater. Res. 20, 1186 (2005).CrossRefGoogle Scholar