Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T00:18:19.079Z Has data issue: false hasContentIssue false

Effects of lithium oxide on the electrical properties of CuO at low temperatures

Published online by Cambridge University Press:  31 January 2011

F. Lanza
Affiliation:
Commission of The European Communities, Joint Research Center, Institute for Advanced Materials, Ispra-21020, Italy
R. Feduzi
Affiliation:
Commission of The European Communities, Joint Research Center, Institute for Advanced Materials, Ispra-21020, Italy
J. Fuger
Affiliation:
Commission of The European Communities, Joint Research Center, Institute for Transuranium Elements, Karlsruhe 7500, Federal Republic of Germany
Get access

Abstract

We present an investigation of the influence of four dopant lithium concentrations on the electrical properties of CuO. X-ray measurements have revealed a single phase formed up to 4.2 at. % of Li, and a second phase formed, Li2CuO2, in the case of 10.5 at. % of Li concentration. The log(ρ/T) vs 1/T data are better represented by two straight lines than by one and show an initial strong decrease of the conduction activation energies for small contents of Li (<1.7 at. %), which becomes weak for larger contents. The change in slope observed in the resistivity measurements as a function of temperature has also been investigated by calorimetric measurements, revealing a specific heat anomaly which can be associated with the antiferromagnetic order transition.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Bednorz, J. G. and Miiller, K. A., Z. Phys. B 64, 189 (1986).CrossRefGoogle Scholar
2Wu, M. K., Ashburn, J. R., Hor, P. H., Meng, R. L., Gao, L., Huang, Z. J., Wang, Y. Z., and Chu, C. W., Phys. Rev. Lett. 58, 908 (1987).CrossRefGoogle Scholar
3Maeda, H., Tanaka, Y., Fukutomi, M., and Asano, T., Jpn. J. Appl. Phys. 27, L209 (1988).Google Scholar
4Sheng, Z. Z. and Hermann, A. M., Nature 332, 138 (1988).Google Scholar
5Wagner, C., Z. Phys. Chem. B 22, 181 (1933).CrossRefGoogle Scholar
6Baumback, H. H. and Wagner, C., Z. Phys. Chem. B 22, 199 (1933).CrossRefGoogle Scholar
7Baumback, H. H. and Wagner, C., Z. Phys. Chem. B 24, 59 (1934).Google Scholar
8Wagner, C. and Kock, E., Z. Phys. Chem. B 32, 439 (1936).CrossRefGoogle Scholar
9Verwey, E. J. W., Haaijman, P. W., Romeijn, F. C., and Oosterhout, G. W., Philips Res. Repts. 5, 173 (1950).Google Scholar
10Morin, F. J., in Semiconductors, edited by Hannay, N. B. (Reinhold Publishing Corporation, New York, 1959), pp. 600, 633.Google Scholar
11Heikes, R. R. and Johnston, W. D., J. Chem. Phys. 26, 3 (1957).CrossRefGoogle Scholar
12Appel, J., in Polarons, edited by Seitz, F., Turnbull, D., and Ehrenreich, H. (Academic Press, New York, 1968).Google Scholar
13Silakov, A. V., Tyurikov, G. S., and Vasilistov, N. P., Izv. Akad. Nauk SSSR, Neorg. Mater. 5, 12, 2221 (1969).Google Scholar
14Kröger, F. A., The Chemistry of Imperfect Crystals (North Holland Publishing Company, Amsterdam, 1964), pp. 108, 109.Google Scholar
15Bosman, A. J. and Crevecoeur, C., Phys. Rev. 144, 763 (1966).CrossRefGoogle Scholar
16 Standard Test Methods for Resistivity of Semiconductor Materials, Annual Book of ASTM Standards, American Society for Testing and Materials, Philadelphia, PA (1985).Google Scholar
17Inzaghi, A. and Lanza, F., Technical Note, JRC-Ispra (1989).Google Scholar
18 Crystal Data, Vol. 2, Inorganic Compounds, Joint Committee on Powder Diffraction (1973).Google Scholar
19Swanson, H. E. and Tatge, E., Nat. Bur. Standards, Circ. 539, 1, 49 (1953).Google Scholar
20Tunell, G., Posnjak, E., and Ksanda, C. J., Z. Krist. 90, 120 (1935).Google Scholar
21Pauling, L., The Nature of The Chemical Bond (Cornell University Press, Ithaca, NY, 1960), 3rd ed., pp. 65, 105.Google Scholar
22Handbook of Chemistry and Physics (CRC Press, 19771978), 58th d., F213.Google Scholar
23Johnston, W. D., in Thermoelectricity: Science and Engineering, edited by Heikes, R. R. and Ure, R. W., Jr. (Interscience Publishers, New York-London, 1961), pp. 232, 284.Google Scholar
24Morin, F. J., Bell. Syst. Tech. 5, 37, 1047 (1958).Google Scholar
25Steiner, P., Kisinger, V., Sander, I., Siegwart, B., Hufner, S., Politis, C., Hoppe, R., and Muller, H. P., Z. Phys. B 67, 497 (1987).CrossRefGoogle Scholar
26Ospelt, M., Henz, J., Kaldis, E., and Wachter, P., Physica C 153155, 159 (1988).Google Scholar
27Bianconi, A., Budnick, J., Flanck, A. M., Fontaine, A., Lagarde, P., Marcelli, A., Tolentino, H., Chamberland, B., Michel, C., Raveau, B., and Demazeau, G., Phys. Lett. A 127, 5, 285 (1988).CrossRefGoogle Scholar
28Bianconi, A., Budnick, J., Demazeau, G., Flanck, A. M., Fontaine, A., Lagarde, P., Jegoudez, J., Revcolevski, A., Marcelli, A., and Verdaguer, M., Physica C 153–155, 117 (1988).Google Scholar
29Kaindl, G., Sarma, D. D., Strebel, O., Simmons, C. T., Neukirch, U., Hoppe, R., and Muller, H. P., Physica C 153–155, 139 (1988).CrossRefGoogle Scholar
30 Powder Diffraction File Set 20–623, International Center for Diffraction Data, Inorganic Volume, Pennsylvania (1979).Google Scholar
31Roden, B., Braun, E., and Freimuth, A., Solid State Commun. 64, 7, 1051 (1987).CrossRefGoogle Scholar
32Paleari, A., Parmigiani, F., Parravicini, G. B., Ripamonti, N., Samoggia, G., and Scagliotti, M., Physica C 153–155, 508 (1988).CrossRefGoogle Scholar
33Brockhouse, B. N., Phys. Rev. 94, 781 (1954).Google Scholar
34Bennett, C. A. and Franklin, N. L., Statistical Analysis in Chemistry and the Chemical Industry (Wiley Publications in Statistics, New York, 1961), 2nd ed., pp. 222, 243.Google Scholar
35Goodenough, J. B., Wicklam, D. G., and Croft, J. M., J. Phys. Chem. Solids 5, 107 (1958).CrossRefGoogle Scholar