Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T14:03:47.193Z Has data issue: false hasContentIssue false

Effects of gamma radiation on poly(methyl methacrylate)/single-wall nanotube composites

Published online by Cambridge University Press:  31 January 2011

P. A. O'Rourke Muisener
Affiliation:
Department of Chemistry, University of South Florida, 4202 E Fowler Avenue, Tampa, Florida 33620–5250
L. Clayton
Affiliation:
Department of Chemistry, University of South Florida, 4202 E Fowler Avenue, Tampa, Florida 33620–5250
J. D'Angelo
Affiliation:
Department of Chemistry, University of South Florida, 4202 E Fowler Avenue, Tampa, Florida 33620–5250
J. P. Harmon
Affiliation:
Department of Chemistry, University of South Florida, 4202 E Fowler Avenue, Tampa, Florida 33620–5250
A. K. Sikder
Affiliation:
Center for Microelectronics Research, University of South Florida, 4202 E Fowler Avenue, Tampa, Florida 33620–5250
A. Kumar
Affiliation:
Center for Microelectronics Research, University of South Florida, 4202 E Fowler Avenue, Tampa, Florida 33620–5250
A. M. Cassell
Affiliation:
NASA Ames Research Center, Moffett Field, California 94035
M. Meyyappan
Affiliation:
NASA Ames Research Center, Moffett Field, California 94035
Get access

Abstract

Single-wall carbon nanotube (SWNT)/poly(methyl methacrylate) (PMMA) composites were fabricated and exposed to ionizing radiation for a total dose of 5.9 Mrads. Neat nanotube paper and pure PMMA were also exposed for comparison, and nonirradiated samples served as controls. A concentration of 0.26 wt% SWNT increased the glass transition temperature (Tg), the Vickers hardness number, and modulus of the matrix. Irradiation of the composite did not significantly change the Tg, the Vickers hardness number, or the modulus; however, the real and imaginary parts of the complex permittivity increased after irradiation. The dielectric properties were found to be more labile to radiation effects than mechanical properties.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ijima, S., Nature 354, 56 (1991).CrossRefGoogle Scholar
2.Rao, C.N.R., Satishkumkar, B.C., Govindaraj, A., and Nath, M., Chem. Phys. Chem. 2, 78 (2001).3.0.CO;2-7>CrossRefGoogle Scholar
3.Journet, C. and Bernier, P., Appl. Phys. A 67, 1 (1999).CrossRefGoogle Scholar
4.Mintmire, J.W., Dunlap, B.I., and White, C.T., Phys. Rev. Lett. 68, 631 (1992).CrossRefGoogle Scholar
5.Saito, R., Fujita, M., Dresselhaus, G., and Dresselhaus, M.S., Appl. Phys. Lett. 60, 2204 (1992).CrossRefGoogle Scholar
6.Lu, J.P., Phys. Rev. Lett. 79, 1297 (1997).CrossRefGoogle Scholar
7.Wong, E.W., Sheehan, P.E., and Lieber, C.M., Science 277, 1971 (1997).CrossRefGoogle Scholar
8.Salvetat, J.P., Kulik, A.J., Bonard, J.M., Briggs, G.A.D., Stockli, T., Metenier, K., Bonnamy, S., Beguin, F., Burnham, N.A., and Forro, L., Adv. Mater. 11, 161 (1999).3.0.CO;2-J>CrossRefGoogle Scholar
9.Wagner, H.D., Lourie, O., Feldman, Y., and Tenne, R., Appl. Phys. Lett. 72, 188 (1998).CrossRefGoogle Scholar
10.Shaffer, M.S.P. and Windle, A.H., Adv. Mater. 11, 937 (1999).3.0.CO;2-9>CrossRefGoogle Scholar
11.Jin, Z., Pramoda, K.P., Xu, G., and Goh, S.H., Chem. Phys. Lett. 337, 43 (2001).CrossRefGoogle Scholar
12.Haggenmueller, R., Gommans, H.H., Rinzler, A.G., Fischer, J.E., and Winey, K.I., Chem. Phys. Lett. 330, 219 (2000).CrossRefGoogle Scholar
13.Jia, Z., Wang, Z., Xu, C., Liang, J., Wei, B., Wu, D., and Zhu, S., Mater. Sci. Eng., A A271, 395 (1999).CrossRefGoogle Scholar
14.Sandler, J., Shaffer, M.S.P., Prasse, T., Bauhofer, W., Schulte, K., and Windle, A.H., Polymer 40, 5967 (1999).CrossRefGoogle Scholar
15.Grimes, C.A., Mungle, C., Kouzoudis, D., Fang, S., and Eklund, P.C., Chem. Phys. Lett. 319, 460 (2000).CrossRefGoogle Scholar
16.Banhart, F., Nano Lett. 1, 329 (2001).CrossRefGoogle Scholar
17.Krasheninnikov, A.V., Nordlund, K., Sirvio, M., Salonen, E., and Keinonen, J., Phys. Rev. 63, 245 (2001).CrossRefGoogle Scholar
18.Kiang, K.H., Goddard, W.A. III, Beyers, R., and Bethune, D.S., J. Phys. Chem. 100, 3749 (1996).CrossRefGoogle Scholar
19.McCarthy, B., Coleman, J.N., Curran, S.A., Dalton, A.B., Davey, A.P., Konya, Z., Fonseca, A., Nagy, J.B., Blau, W.J., J. Mater. Sci. Lett. 19, 2239 (2000).CrossRefGoogle Scholar
20.Hwang, G.L. and Hwang, K.C., Nano Lett. 8, 435 (2001).CrossRefGoogle Scholar
21.Jin, Z., Sun, X., Xu, G., Goh, S.H., and Ji, W., Chem. Phys. Lett. 318, 505 (2000).CrossRefGoogle Scholar
22.Star, A., Stoddart, J.F., Steureman, D., Diehl, M., Boukai, A., Wong, E.W., Yang, X., Chung, S.W., Choi, H., and Heath, J.R., Angew. Chem., Int. Ed. 40, 1721 (2001).3.0.CO;2-F>CrossRefGoogle Scholar
23.Collins, E., Bares, J., and Billmeyer, F.W., Experiments in Polymer Chemistry, (Wiley, New York, 1973).Google Scholar
24.Thess, A., Lee, R., Pl. Nikolaev, H. Dai, P. Petit, Robert, J., Xu, C.H., Lee, Y.H., S.G. Kim A.G. Rinzler, D.T. Colbert, G.E. Scuseria, J.E. Fischer, and R.E. Smalley, Science 273, 483 (1996).CrossRefGoogle Scholar
25.Liu, J., Rinzler, A.G., Dai, H., Hafner, J.H., Bradley, R.K., Boul, P.J., Lu, A., Inverson, T., Shelimov, K., Huffman, C.B., Rodriguez-Macias, F., Shon, Y-S., Lee, T.R., Colbert, D.T., and Smalley, R.E., Science 280, 1253 (1998).CrossRefGoogle Scholar
26.Wei, C., Srivastava, D., and Cho, K.J., Nano Lett. 2, 647 (2002).CrossRefGoogle Scholar
27.Garrett, R.G., Hill, D.. Le, T., Milne, K., O’Donnell, J., Perera, S., and Pomery, P., in Radiation Effects in Polymers, edited by Clough, R.L. and Shalaby, S. (ACS Symposium Series 475, American Chemical Society, Washington, DC, 1991), p. 150.Google Scholar
28.Guillot, J., Polymer Photophysics and Photochemistry (Cambridge University Press, New York, 1985), p. 361.Google Scholar
29.Clough, R.L., Gillen, K.T., and Dole, M., in Irradiation Effects on Polymers, edited by Cleggand, D.W. and Collyer, A.A. (Elsevier Applied Science, New York, 1991) p. 117.CrossRefGoogle Scholar
30.Gao, H. and Harmon, J.P., Thermochim. Acta, 284, 85 (1996).CrossRefGoogle Scholar
31.Rao, R., J. Chem. Phys. 9, 682 (1941).CrossRefGoogle Scholar
32.Krevelan, D.W. Van and Hoftyzer, P.J., Properties of Polymers (Elsevier, Amsterdam, The Netherlands, 1970).Google Scholar
33.Bertolucci, P.R.H. and Harmon, J.P., Photonic Optoelectron. Polym., 79 (1997).Google Scholar
34.Higgenbotham-Bertolucci, P.R., Gao, H., Harmon, J.P., Polym. Eng. Sci. 41, 873 (2001).CrossRefGoogle Scholar
35.Emran, S.K., Liu, Y., Newkome, G.R., and Harmon, J.P., J. Polym. Sci., Part B: Polym. Phys. 39, 1381 (2001).CrossRefGoogle Scholar
36.Calves, M.C. and Harmon, J.P., in Optical Polymers Fibers and Waveguides, edited by Harmon, J.P. and Noren, G.K. (ACS Symposium Series 795, American Chemical Society, Washington, DC, 1999), p. 91.Google Scholar