Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T23:02:27.338Z Has data issue: false hasContentIssue false

Effect of trace Na additions on the hydrogen absorption kinetics of Mg2Ni

Published online by Cambridge University Press:  07 April 2016

Xuan Quy Tran*
Affiliation:
Nihon Superior Centre for the Manufacture of Electronic Materials (NS CMEM), School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
Stuart D. McDonald
Affiliation:
Nihon Superior Centre for the Manufacture of Electronic Materials (NS CMEM), School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
Qinfen Gu
Affiliation:
Powder Diffraction Beamline, Australian Synchrotron, Victoria 3168, Australia
Syo Matsumura
Affiliation:
Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Fukuoka 819–0395, Japan
Kazuhiro Nogita
Affiliation:
Nihon Superior Centre for the Manufacture of Electronic Materials (NS CMEM), School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
*
a)Address all correspondence to this author. e-mail: xuan.tran@uqconnect.edu.au
Get access

Abstract

It is demonstrated that Na doping can significantly improve the hydriding performance of Mg2Ni under an isobaric-isothermal condition of 2 MPa H2 and 350 °C. This is achieved via an increase of the interphase grain boundary area and density of dislocations as compared to the Na-free material. Significant enrichment of Na+ cations on the alloys' surface coupled with the catalytic effect of metallic Ni are suggested to increase the hydrogen–metal bonding strength facilitating hydrogen adsorption/dissociation. The mechanisms of hydrogen absorption are discussed based on a nucleation and growth theory. Additionally, by means of in situ synchrotron powder x-ray diffraction, the transition of Mg2Ni into the stable Mg2NiH0.3 is observed in real-time.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Sakintuna, B., Lamari-Darkrim, F., and Hirscher, M.: Metal hydride materials for solid hydrogen storage: A review. Int. J. Hydrogen Energy 32(9), 1121 (2007).CrossRefGoogle Scholar
Züttel, A., Hirscher, M., Panella, B., Yvon, K., Orimo, S.-i., Bogdanović, B., Felderhoff, M., Schüth, F., Borgschulte, A., Goetze, S., Suda, S., and Kelly, M.T.: Hydrogen Storage, In Hydrogen as a Future Energy Carrier (Wiley-VCH Verlag GmbH & Co. KGaA, Hoboken, 2008); p. 165.Google Scholar
Zaluski, L., Zaluska, A., and Ström-Olsen, J.O.: Hydrogen absorption in nanocrystalline Mg2Ni formed by mechanical alloying. J. Alloys Compd. 217(2), 245 (1995).Google Scholar
Skripnyuk, V.M., Rabkin, E., Estrin, Y., and Lapovok, R.: The effect of ball milling and equal channel angular pressing on the hydrogen absorption/desorption properties of Mg–4.95 wt% Zn–0.71 wt% Zr (ZK60) alloy. Acta Mater. 52(2), 405 (2004).Google Scholar
Barkhordarian, G., Klassen, T., and Bormann, R.: Effect of Nb2O5 content on hydrogen reaction kinetics of Mg. J. Alloys Compd. 364(1–2), 242 (2004).Google Scholar
Hou, X., Hu, R., Zhang, T., Kou, H., and Li, J.: Hydrogenation behavior of high-energy ball milled amorphous Mg2Ni catalyzed by multi-walled carbon nanotubes. Int. J. Hydrogen Energy 38(36), 16168 (2013).CrossRefGoogle Scholar
Zaluska, A., Zaluski, L., and Ström-Olsen, J.O.: Nanocrystalline magnesium for hydrogen storage. J. Alloys Compd. 288(1–2), 217 (1999).Google Scholar
Vyas, D., Jain, P., Khan, J., Kulshrestha, V., Jain, A., and Jain, I.P.: Effect of Cu catalyst on the hydrogenation and thermodynamic properties of Mg2Ni. Int. J. Hydrogen Energy 37(4), 3755 (2012).Google Scholar
Amira, S. and Huot, J.: Effect of cold rolling on hydrogen sorption properties of die-cast and as-cast magnesium alloys. J. Alloys Compd. 520(0), 287 (2012).Google Scholar
Danaie, M., Mauer, C., Mitlin, D., and Huot, J.: Hydrogen storage in bulk Mg–Ti and Mg–stainless steel multilayer composites synthesized via accumulative roll-bonding (ARB). Int. J. Hydrogen Energy 36(4), 3022 (2011).Google Scholar
Skripnyuk, V., Buchman, E., Rabkin, E., Estrin, Y., Popov, M., and Jorgensen, S.: The effect of equal channel angular pressing on hydrogen storage properties of a eutectic Mg–Ni alloy. J. Alloys Compd. 436(1–2), 99 (2007).Google Scholar
Cho, Y.H., Aminorroaya, S., Liu, H.K., and Dahle, A.K.: The effect of transition metals on hydrogen migration and catalysis in cast Mg–Ni alloys. Int. J. Hydrogen Energy 36(8), 4984 (2011).CrossRefGoogle Scholar
Kalinichenka, S., Röntzsch, L., Riedl, T., Weißgärber, T., and Kieback, B.: Hydrogen storage properties and microstructure of melt-spun Mg90Ni8RE2 (RE = Y, Nd, Gd). Int. J. Hydrogen Energy 36(17), 10808 (2011).Google Scholar
Polanski, M. and Bystrzycki, J.: Comparative studies of the influence of different nano-sized metal oxides on the hydrogen sorption properties of magnesium hydride. J. Alloys Compd. 486(1–2), 697 (2009).Google Scholar
Janot, R., Aymard, L., Rougier, A., Nazri, G.A., and Tarascon, J.M.: Enhanced hydrogen sorption capacities and kinetics of Mg2Ni alloys by ball-milling with carbon and Pd coating. J. Mater. Res. 18(8), 1749 (2003).Google Scholar
Reilly, J.J. and Wiswall, R.H. Jr.: The reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4 . Inorg. Chem. 7(11), 2254 (1968).CrossRefGoogle Scholar
Cova, F., Arneodo Larochette, P., and Gennari, F.: Hydrogen sorption in MgH2-based composites: The role of Ni and LiBH4 additives. Int. J. Hydrogen Energy 37(20), 15210 (2012).Google Scholar
Liang, G., Huot, J., Boily, S., Van Neste, A., and Schulz, R.: Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2–Tm (Tm = Ti, V, Mn, Fe and Ni) systems. J. Alloys Compd. 292(1–2), 247 (1999).Google Scholar
Schlapbach, L., Shaltiel, D., and Oelhafen, P.: Catalytic effect in the hydrogenation of Mg and Mg compounds: Surface analysis of MgMg2Ni and Mg2Ni. Mater. Res. Bull. 14(9), 1235 (1979).Google Scholar
Song, W., Li, J., Zhang, T., Kou, H., and Xue, X.: Microstructure and tailoring hydrogenation performance of Y-doped Mg2Ni alloys. J. Power Sources 245, 808 (2014).Google Scholar
Xie, D.H., Li, P., Zeng, C.X., Sun, J.W., and Qu, X.H.: Effect of substitution of Nd for Mg on the hydrogen storage properties of Mg2Ni alloy. J. Alloys Compd. 478(1–2), 96 (2009).CrossRefGoogle Scholar
Révész, Á., Gajdics, M., Varga, L.K., Krállics, G., Péter, L., and Spassov, T.: Hydrogen storage of nanocrystalline Mg–Ni alloy processed by equal-channel angular pressing and cold rolling. Int. J. Hydrogen Energy 39(18), 9911 (2014).Google Scholar
Hongo, T., Edalati, K., Arita, M., Matsuda, J., Akiba, E., and Horita, Z.: Significance of grain boundaries and stacking faults on hydrogen storage properties of Mg2Ni intermetallics processed by high-pressure torsion. Acta Mater. 92(0), 46 (2015).CrossRefGoogle Scholar
Nogita, K., Ockert, S., Pierce, J., Greaves, M.C., Gourlay, C.M., and Dahle, A.K.: Engineering the Mg–Mg2Ni eutectic transformation to produce improved hydrogen storage alloys. Int. J. Hydrogen Energy 34(18), 7686 (2009).CrossRefGoogle Scholar
Clark, A.A.N.-H.J.B.: Mg–Ni Binary Alloy Phase Diagram (ASM International, Cleveland, 1992); p. 2280.Google Scholar
Nogita, K., Tran, X.Q., Yamamoto, T., Tanaka, E., McDonald, S.D., Gourlay, C.M., Yasuda, K., and Matsumura, S.: Evidence of the hydrogen release mechanism in bulk MgH2 . Sci. Rep. 5, (2015).Google Scholar
Tran, X.Q., McDonald, S.D., Gu, Q.F., and Nogita, K.: In situ synchrotron X-ray diffraction investigation of the hydriding and dehydriding properties of a cast Mg–Ni alloy. J. Alloys Compd. 636, 249 (2015).CrossRefGoogle Scholar
Lu, S.-Z. and Hellawell, A.: The mechanism of silicon modification in aluminum–silicon alloys: Impurity induced twinning. Metall. Trans. A 18(10), 1721 (1987).Google Scholar
Shamsuzzoha, M. and Hogan, L.M.: The crystal morphology of fibrous silicon in strontium-modified Al–Si eutectic. Philos. Mag. A 54(4), 459 (1986).Google Scholar
Nogita, K. and Dahle, A.K.: Microstructure and solidification of hypoeutectic, eutectic, and hypereutectic Mg–Mg2Ni alloys, In Proceedings of, the 5th Decennial International Conference on Solidification Processing (Solidification Processing, Sheffield, 2007), p. 206.Google Scholar
Kurz, W. and Fisher, D.J.: Fundamentals of Solidification (Trans Tech Publications Ltd., Zurich, 1998).CrossRefGoogle Scholar
Yao, H.B., Li, Y., and Wee, A.T.S.: An XPS investigation of the oxidation/corrosion of melt-spun Mg. Appl. Surf. Sci. 158(1–2), 112 (2000).Google Scholar
Hillebrecht, F.U., Fuggle, J.C., Bennett, P.A., Zołnierek, Z., and Freiburg, C.: Electronic structure of Ni and Pd alloys. II. X-ray photoelectron core-level spectra. Phys. Rev. B: Condens. Matter Mater. Phys. 27(4), 2179 (1983).Google Scholar
Kim, K.S. and Winograd, N.: X-ray photoelectron spectroscopic studies of nickel-oxygen surfaces using oxygen and argon ion-bombardment. Surf. Sci. 43(2), 625 (1974).Google Scholar
Briggs, D.: Handbook of X-ray Photoelectron Spectroscopy, Wanger, C.D., Riggs, W.M., Davis, L.E., Moulder, J.F., and Muilenberg, G.E. eds.; Perkin-Elmer Corp., Physical Electronics Division: Eden Prairie, Minnesota, USA, 1979, 190 pp. $195 Surface and Interface Analysis. 3(4), v (1981).Google Scholar
Sharma, J., Gora, T., Rimstidt, J.D., and Staley, R.: X-ray photoelectron spectra of the alkali azides. Chem. Phys. Lett. 15(2), 232 (1972).Google Scholar
Steiner, P., Höchst, H., and Hüfner, S.: XPS investigation of simple metals. Z. Phys. B: Condens. Matter Quanta 30(2), 129 (1978).Google Scholar
Citrin, P.H.: High-resolution X-ray photoemission from sodium metal and its hydroxide. Phys. Rev. B: Condens. Matter Mater. Phys. 8(12), 5545 (1973).Google Scholar
Hsu, C.W., Lee, S.L., Jeng, R.R., and Lin, J.C.: Mass production of Mg2Ni alloy bulk by isothermal evaporation casting process. Int. J. Hydrogen Energy 32(18), 4907 (2007).Google Scholar
Zeng, K., Klassen, T., Oelerich, W., and Bormann, R.: Thermodynamic analysis of the hydriding process of Mg–Ni alloys. J. Alloys Compd. 283(1–2), 213 (1999).Google Scholar
Avrami, M.: Kinetics of phase change. I: General theory. J. Chem. Phys. 7(12), 1103 (1939).Google Scholar
Avrami, M.: Kinetics of phase change. II Transformation-time relations for random distribution of nuclei. J. Chem. Phys. 8(2), 212 (1940).Google Scholar
Avrami, M. and Granulation, : Phase change, and microstructure kinetics of phase change. III. J. Chem. Phys. 9(2), 177 (1941).Google Scholar
Tien, H.-Y., Tanniru, M., Wu, C.-Y., and Ebrahimi, F.: Mechanism of hydrogen capacity dependence on the hydrogenation temperature. Scr. Mater. 62(5), 274 (2010).Google Scholar
Deutges, M., Barth, H.P., Chen, Y., Borchers, C., and Kirchheim, R.: Hydrogen diffusivities as a measure of relative dislocation densities in palladium and increase of the density by plastic deformation in the presence of dissolved hydrogen. Acta Mater. 82(0), 266 (2015).CrossRefGoogle Scholar
Danaie, M., Tao, S.X., Kalisvaart, P., and Mitlin, D.: Analysis of deformation twins and the partially dehydrogenated microstructure in nanocrystalline magnesium hydride (MgH2) powder. Acta Mater. 58(8), 3162 (2010).Google Scholar
Brass, A.M. and Chanfreau, A.: Accelerated diffusion of hydrogen along grain boundaries in nickel. Acta Mater. 44(9), 3823 (1996).Google Scholar
Oudriss, A., Creus, J., Bouhattate, J., Conforto, E., Berziou, C., Savall, C., and Feaugas, X.: Grain size and grain-boundary effects on diffusion and trapping of hydrogen in pure nickel. Acta Mater. 60(19), 6814 (2012).CrossRefGoogle Scholar
Edalati, K., Matsuda, J., Arita, M., Daio, T., Akiba, E., and Horita, Z.: Mechanism of activation of TiFe intermetallics for hydrogen storage by severe plastic deformation using high-pressure torsion. Appl. Phys. Lett. 103(14), 143902 (2013).CrossRefGoogle Scholar
Čermák, J. and Král, L.: Hydrogen diffusion in Mg–H and Mg–Ni–H alloys. Acta Mater. 56(12), 2677 (2008).Google Scholar
Töpler, J., Buchner, H., Säufferer, H., Knorr, K., and Prandl, W.: Measurements of the diffusion of hydrogen atoms in magnesium and Mg2Ni by neutron scattering. J. Less-Common Met. 88(2), 397 (1982).Google Scholar
Jensen, T.R., Andreasen, A., Vegge, T., Andreasen, J.W., Ståhl, K., Pedersen, A.S., Nielsen, M.M., Molenbroek, A.M., and Flemming, B.: Dehydrogenation kinetics of pure and nickel-doped magnesium hydride investigated by in situ time-resolved powder X-ray diffraction. Int. J. Hydrogen Energy 31(14), 2052 (2006).Google Scholar
Eisenberg, F.G., Zagnoli, D.A., and Sheridan, J.J. III: Effect of surface nickel on the hydriding–dehydriding kinetics of MgH2 . J. Less-Common Met. 74(2), 323 (1980).Google Scholar
Friedlmeier, G. and Groll, M.: Experimental analysis and modelling of the hydriding kinetics of Ni-doped and pure Mg. J. Alloys Compd. 253–254, 550 (1997).Google Scholar
Chandrakumar, K.R.S. and Ghosh, S.K.: Alkali-metal-induced enhancement of hydrogen adsorption in C60 Fullerene: An ab initio study. Nano Lett. 8(1), 13 (2008).Google Scholar
Chen, P., Wu, X., Lin, J., and Tan, K.L.: High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures. Science 285(5424), 91 (1999).Google Scholar
Ward, P.A., Teprovich, J.A. Jr., Compton, R.N., Schwartz, V., Veith, G.M., and Zidan, R.: Evaluation of the physi- and chemisorption of hydrogen in alkali (Na, Li) doped fullerenes. Int. J. Hydrogen Energy 40(6), 2710 (2015).Google Scholar
Chu, C.-L., Chen, J.-R., and Lee, T.-Y.: Enhancement of hydrogen adsorption by alkali-metal cation doping of metal-organic framework-5. Int. J. Hydrogen Energy 37(8), 6721 (2012).Google Scholar
Liu, Y., Liu, W., Wang, R., Hao, L., and Jiao, W.: Hydrogen storage using Na-decorated graphyne and its boron nitride analog. Int. J. Hydrogen Energy 39(24), 12757 (2014).Google Scholar
Rao, G.R., Prabhakaran, K., and Rao, C.N.R.: Nitrogen adsorbed on clean and promoted Ni surfaces. Surf. Sci. 176(1), L835 (1986).Google Scholar
Supplementary material: File

Tran supplementary material

Tran supplementary material

Download Tran supplementary material(File)
File 1.6 MB