Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-25T21:54:58.635Z Has data issue: false hasContentIssue false

Effect of the ∑5(310)/[001]θ = 53.1° grain boundary on the incipient yield of bicrystal copper: A quasicontinuum simulation and nanoindentation experiment

Published online by Cambridge University Press:  21 February 2013

Debin Shan*
Affiliation:
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
Lumeng Wang
Affiliation:
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
Lin Yuan
Affiliation:
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
*
a)Address all correspondence to this author. e-mail: d.b.shan@gmail.com
Get access

Abstract

To study the initial plasticity during the nanoindentation of face-centered cubic bicrystal materials at the micro- and nanoscales, a $\sum {5(310)/[001]} {\rm{\theta }} = 53.1\circ $ symmetrical tilt grain boundary (GB) model of bicrystal copper was constructed using the quasicontinuum method. The nanoindentation process of the model was then simulated, and a group of indents across the GB during a bicrystal copper nanoindentation experiment were performed. The effect of the GB on the incipient yield was studied when the transition from elastic to plastic deformation and the first dislocation emission occur. The results show that the maximum incipient load appears in the center of the boundary; the load first increases and then gradually decreases until it presents no further significant changes when the indenter is far from the GB. It is observed that theoretical simulation results are in good agreement with those of the experimental measurement. The incipient yield force was affected by the size and the position of the indenter, the structure of the boundary, and the first dislocation emission.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kiely, J.D. and Houston, J.E.: Nanomechanical properties of Au (111), (001), and (110) surfaces. Phys. Rev. B 57, 12588 (1998).CrossRefGoogle Scholar
Saraev, D. and Miller, R.E.: Atomic-scale simulations of nanoindentation-induced plasticity in copper crystals with nanometer-sized nickel coatings. Acta Mater. 54, 33 (2006).CrossRefGoogle Scholar
Begau, C., Hartmaier, A., George, E.P., and Pharr, G.M.: Atomistic processes of dislocation generation and plastic deformation during nanoindentation. Acta Mater. 59, 934 (2011).10.1016/j.actamat.2010.10.016CrossRefGoogle Scholar
Kramer, D.E., Yoder, K.B., and Gerberich, W.W.: Surface constrained plasticity: Oxide rupture and the yield point process. Philos. Mag. A 81, 2033 (2001).CrossRefGoogle Scholar
Balluffi, R.W. and Sutton, A.P.: Why should we be interested in the atomic structure of interfaces? Mater. Sci. Forum 1, 207 (1996).Google Scholar
Lu, K., Lu, L., and Suresh, S.: Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science 324, 349 (2009).CrossRefGoogle ScholarPubMed
Corcoran, S.G., Colton, R.J., Lilleodden, E.T., and Gerberich, WW.: Anomalous plastic deformation at surfaces: Nanoindentation of gold single crystals. Phys. Rev. B 55, 16057 (1997).CrossRefGoogle Scholar
Miller, R.E., Shilkrot, L.E., and Curtin, W.A.: A coupled atomistics and discrete dislocation plasticity simulation of nanoindentation into single crystal thin films. Acta Mater. 52, 271 (2004).10.1016/j.actamat.2003.09.011CrossRefGoogle Scholar
Tadmor, E.B., Ortiz, M., and Phillips, R.: Quasicontinuum analysis of defects in solids. Philos. Mag. A 73, 1529 (1996).10.1080/01418619608243000CrossRefGoogle Scholar
Tadmor, E.B., Miller, R.E., Phillips, R., and Ortiz, M.: Nanoindentation and incipient plasticity. J. Mater. Res. 14, 2233 (1999).10.1557/JMR.1999.0300CrossRefGoogle Scholar
Smith, G.S., Tadmor, E.B, Bernstein, N., and Kaxiras, E.: Multiscale simulations of silicon nanoindentation. Acta Mater. 49, 4089 (2001).10.1016/S1359-6454(01)00267-1CrossRefGoogle Scholar
Li, J., Ni, Y., Wang, H., and Mei, J.: Effects of crystalline anisotropy and indenter size on nanoindentation by multiscale simulation. Nanoscale Res. Lett. 5, 420 (2010).10.1007/s11671-009-9500-xCrossRefGoogle Scholar
Mei, J., Li, J., Ni, Y., and Wang, H.: Multiscale simulation of indentation, retraction and fracture processes of nanocontact. Nanoscale Res. Lett. 5, 692 (2010).CrossRefGoogle ScholarPubMed
Ng, T.Y., Pandurangan, V., and Li, H.: Multiscale modeling of nanoindentation in copper thin films via the concurrent coupling of the meshless Hermite-Cloud method with molecular dynamics. Appl. Surf. Sci. 257, 10613 (2011).10.1016/j.apsusc.2011.07.059CrossRefGoogle Scholar
Iglesias, R.A. and Leiva, E.P.M.: Two-grain nanoindentation using the quasicontinuum method: Two-dimensional model approach. Acta Mater. 54, 2655 (2006).CrossRefGoogle Scholar
Soifer, Y.M., Verdyan, A., Kazakevich, M., and Rabkin, E.: Edge effect during nanoindentation of thin copper films. Mater. Lett. 59, 1434 (2005).10.1016/j.matlet.2004.08.043CrossRefGoogle Scholar
Soifer, Y.M., Verdyan, A., Kazakevich, M., and Rabkin, E.: Nanohardness of copper in the vicinity of grain boundaries. Scr. Mater. 47, 799 (2002).10.1016/S1359-6462(02)00284-1CrossRefGoogle Scholar
Soer, W.A., Hosson, J.Th.M.De., Minor, A.M., Morris, J.W. Jr., and Stach, E.A.: Effects of solute Mg on grain boundary and dislocation dynamics during nanoindentation of Al-Mg thin films. Acta Mater. 52, 5783 (2004).CrossRefGoogle Scholar
Soer, W.A. and Hosson, J.Th.M.De.: Detection of grain-boundary resistance to slip transfer using nanoindentation. Mater. Lett. 59, 3192 (2005).10.1016/j.matlet.2005.03.075CrossRefGoogle Scholar
Soer, W.A., Aifantis, K.E., and Hosson, J.Th.M.De.: Incipient plasticity during nanoindentation at grain boundaryes in body-centered cubic metals. Acta Mater. 53, 4665 (2005).10.1016/j.actamat.2005.07.001CrossRefGoogle Scholar
Aifantis, K.E., Soer, W.A., Hosson, J.Th.M.De., and Willis, J.R.: Interfaces within strain gradient plasticity: Theory and experiments. Acta Mater. 54, 5077 (2006).10.1016/j.actamat.2006.06.040CrossRefGoogle Scholar
Katerina Aifantis, E. and Ngan, A.H.W.: Modeling dislocation—grain boundary interactions through gradient plasticity and nanoindentation. Mater. Sci. Eng., A 459, 251261 (2007).CrossRefGoogle Scholar
Eliash, T., Kazakevich, M., Semenov, VN., and Rabkin, E.: Nanohardness of molybdenum in the vicinity of grain boundaries and triple junctions. Acta Mater. 56, 5640 (2008).10.1016/j.actamat.2008.07.036CrossRefGoogle Scholar
Miller, R.E. and Tadmor, E.B.: The quasicontinuum method: Overview, applications and current directions. J. Comput.-Aided Mater. Des. 9, 203 (2002).10.1023/A:1026098010127CrossRefGoogle Scholar
Foiles, SM., Baskes, MI., and Daw, MS.: Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B 33, 7983 (1986).10.1103/PhysRevB.33.7983CrossRefGoogle ScholarPubMed
Liu, Y., Wang, B., Yashino, M., Roy, S., Lu, H., and Komanduri, R.: Combined numerical simulation and nanoindentation for determining mechanical properties of single crystal copper at mesoscale. J. Mech. Phys. Solids 53, 2718 (2005).10.1016/j.jmps.2005.07.003CrossRefGoogle Scholar
Dean, J., Wheeler, J.M., and Clyne, T.W.: Use of quasi-static nanoindentation data to obtain stress strain characteristics for metallic materials. Acta Mater. 58, 3613 (2010).10.1016/j.actamat.2010.02.031CrossRefGoogle Scholar
Bahr, D.F., Kramer, D.E., and Gerberich, W.W.: Non-linear deformation mechanisms during nanoindentation. Acta Mater. 46, 3605 (1998).10.1016/S1359-6454(98)00024-XCrossRefGoogle Scholar