Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T14:24:50.676Z Has data issue: false hasContentIssue false

Effect of processing on Charpy impact toughness of metallic glass matrix composites

Published online by Cambridge University Press:  18 May 2011

Carl Zachrisson
Affiliation:
Jet Propulsion Laboratory/California Institute of Technology, Pasadena, California 91109
Henry Kozachkov
Affiliation:
California Institute of Technology, Pasadena, California 91126
Scott Roberts
Affiliation:
California Institute of Technology, Pasadena, California 91126
Georg Kaltenboeck
Affiliation:
California Institute of Technology, Pasadena, California 91126
Robert D. Conner
Affiliation:
California Institute of Technology, Pasadena, California 91126; and California State University—Northridge, Northridge, California 91330
Marios D. Demetriou
Affiliation:
California Institute of Technology, Pasadena, California 91126
William L. Johnson
Affiliation:
California Institute of Technology, Pasadena, California 91126
Douglas C. Hofmann*
Affiliation:
Jet Propulsion Laboratory/California Institute of Technology, Pasadena, California 91109; and California Institute of Technology, Pasadena, California 91126
*
a)Address all correspondence to this author. e-mail: dch@jpl.nasa.gov
Get access

Abstract

In this study, compact Charpy impact testing was used to investigate the effect of processing history and dendrite morphology of bulk metallic glass matrix composites (BMGMCs) on impact toughness. Composite samples were fabricated via suction casting and semisolid forging, and the results were compared with crystalline alloys in the same geometry. A strong dependence on processing was observed, with samples exhibiting up to a 30-fold increase in impact toughness depending on processing and microstructure. Provided that attention is paid to processing techniques, BMGMCs are shown to have properties that equal or surpass some conventionally used crystalline alloys. These properties invite further exploration of these materials in structural applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Greer, A.L.: Metallic glasses. Science 267, 5206 (1995).CrossRefGoogle ScholarPubMed
2.Schroers, J.: Processing of bulk metallic glass. Adv. Mater. 22, 14 (2010).CrossRefGoogle ScholarPubMed
3.Kumar, G., Tang, H.X., and Schroers, J.: Nanomoulding with amorphous metals. Nature 457, 7231 (2009).CrossRefGoogle ScholarPubMed
4.Liu, Y.H., Wang, G., Wang, R.J., Zhao, D.W., Pan, M.X., and Wang, W.H.: Super plastic bulk metallic glasses at room temperature. Science 315, 5817 (2007).CrossRefGoogle ScholarPubMed
5.Johnson, W.L.: Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 24, 42 (1999).CrossRefGoogle Scholar
6.Peker, A. and Johnson, W.L.: A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Appl. Phys. Lett. 63, 2342 (1993).CrossRefGoogle Scholar
7.Xu, J., Ramamurty, U., and Ma, E.: The fracture toughness of bulk metallic glasses. JOM 62, 4 (2010).CrossRefGoogle Scholar
8.Launey, M.E., Hofmann, D.C., Suh, J.Y., Kozachkov, H., Johnson, W.L., and Ritchie, R.O.: Fracture toughness and crack resistance curve behavior in metallic glass-matrix composites. Appl. Phys. Lett. 94, 241910 (2009).CrossRefGoogle Scholar
9.Launey, M.E., Hofmann, D.C., Johnson, W.L., and Ritchie, R.O.: Solution to the problem of the poor cyclic fatigue resistance of bulk metallic glasses. Proc. Natl. Acad. Sci. U.S.A. 106, 4986 (2009).CrossRefGoogle Scholar
10.Hays, C.C., Kim, C.P., and Johnson, W.L.: Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Phys. Rev. Lett. 84, 2901 (2000).CrossRefGoogle ScholarPubMed
11.Szuecs, F., Kim, C.P., and Johnson, W.L.: Mechanical properties of Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5 ductile phase reinforced bulk metallic glass composite. Acta Mater. 49, 1507 (2001).CrossRefGoogle Scholar
12.Hofmann, D.C., Suh, J.Y., Wiest, A., Duan, G., Lind, M.L., Demetriou, M.D., and Johnson, W.L.: Designing metallic glass matrix composites with high toughness and tensile ductility. Nature 451, 1086 (2008).CrossRefGoogle ScholarPubMed
13.Hofmann, D.C., Suh, J.Y., Wiest, A., Lind, M.L., Demetriou, M.D., and Johnson, W.L.: Development of tough, low-density titanium based bulk metallic glass matrix composites with tensile ductility. Proc. Natl. Acad. Sci. U.S.A. 105, 20136 (2008).CrossRefGoogle ScholarPubMed
14.Pauly, S., Gorantla, S., Wang, G., Kuhn, U., and Eckert, J.: Transformation-mediated ductility in CuZr-based bulk metallic glasses. Nat. Mater. 9, 473 (2010).CrossRefGoogle ScholarPubMed
15.Wu, Y., Xiao, Y., Chen, G., Liu, C.T., and Lu, Z.: Bulk metallic glass composites with transformation-mediated work-hardening and ductility. Adv. Mater. 22, 2270 (2010).CrossRefGoogle ScholarPubMed
16.Bian, Z., Kato, H., Qin, C., Zhang, W., and Inoue, A.: Cu–Hf–Ti–Ag–Ta bulk metallic glass composites and their properties. Acta Mater. 53, 2037 (2005).CrossRefGoogle Scholar
17.Qin, C.L., Zhang, W., Asami, K., Kimura, H., Wang, X.M., and Inoue, A.: A novel Cu-based BMG composite with high corrosion resistance and excellent mechanical properties. Acta Mater. 54, 3713 (2006).CrossRefGoogle Scholar
18.Flores, K.M., Johnson, W.L., and Dauskardt, R.H.: Fracture and fatigue behavior of a Zr-Ti-Nb ductile phase reinforced bulk metallic glass matrix composite. Scr. Mater. 49, 1181 (2003).CrossRefGoogle Scholar
19.Lowhaphandu, P. and Lewandowski, J.J.: Fracture toughness and notched toughness of bulk amorphous alloy: Zr-Ti-Ni-Cu-Be. Scr. Mater. 38, 1811 (1998).CrossRefGoogle Scholar
20.Chen, J.L., Chen, G., Xu, F., Du, Y.L., Li, Y.S., and Liu, C.T.: Correlation of the microstructure and mechanical properties of Zr-based in-situ bulk metallic glass matrix composites. Intermetallics 18, 12 (2010).Google Scholar
21.Lim, K.R., Na, J.H., Park, J.M., Kim, W.T., and Kim, D.H.: Enhancement of plasticity in Ti-based metallic glass matrix composites by controlling characteristic and volume fraction of primary phase. J. Mater. Res. 25, 11 (2010).CrossRefGoogle Scholar
22.Park, J.M., Jayaraj, J., Kim, D.H., Mattern, N., Wang, G., and Eckert, J.: Tailoring of in situ Ti-based bulk glassy matrix composites with high mechanical performance. Intermetallics 18, 10 (2010).CrossRefGoogle Scholar
23.Guo, S.F., Liu, L., Li, N., and Li, Y.: Fe-based bulk metallic glass matrix composite with large plasticity. Scr. Mater. 62, 6 (2010).CrossRefGoogle Scholar
24.Zhu, Z., Zhang, H., Hu, Z., Zhang, W. and Inoue, A.: Ta-particulate reinforced Zr-based bulk metallic glass matrix composites with tensile plasticity. Scr. Mater. 62, 278 (2010).CrossRefGoogle Scholar
25.Qiao, J.W., Feng, P., Zhang, Y., Zhang, Q.M., Liaw, P.K., and Chen, G.L.: Quasi-static and dynamic deformation behaviors of in situ Zr-based bulk-metallic-glass-matrix-composites. J. Mater. Res. 25, 12 (2010).CrossRefGoogle Scholar
26.Raghavan, R., Murali, P., and Ramamurty, U.: On factors influencing the ductile-to-brittle transition in a bulk metallic glass. Acta Mater. 57, 3332 (2009).CrossRefGoogle Scholar
27.Raghavan, R., Murali, P., and Ramamurty, U.: Ductile to brittle transition in the Zr41.2Ti13.75Cu12.5Ni10Be22.5 bulk metallic glass. Mater. Sci. Eng., A 417, 1 (2006).Google Scholar
28.Shin, H.S., Kim, K.H., and Oh, S.Y.: Fracture behavior of Zr-based metallic glass under impact loading. Int. J. Mod. Phys. B 20, 27 (2006).CrossRefGoogle Scholar
29.Shin, H.S., Kim, K.H., Jung, Y.J., and Ko, D.K.: Impact fracture behavior of Zr-based bulk metallic glass using subsize Charpy specimen. Adv. Frac. Strength 279, 1356 (2005).Google Scholar
30.Park, J.S., Lim, H.K., Park, E.S., Shin, H.S., Lee, W.H., Kim, W.T., and Kim, D.H.: Fracture behavior of bulk metallic glass/metal laminate composites. Mater. Sci. Eng., A 417, 1 (2006).CrossRefGoogle Scholar
31.Hofmann, D.C., Kozachakov, H., Khalifa, H.E., Schramm, J.P., Demetriou, M.D., Vecchio, K.S., and Johnson, W.L.: Semi-solid induction forging of metallic glass matrix composites. JOM 61, 11 (2009).CrossRefGoogle Scholar