Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T10:50:30.997Z Has data issue: false hasContentIssue false

Effect of multilayer interface through in situ fracture of Cu/Nb and Al/Nb metallic multilayers

Published online by Cambridge University Press:  21 January 2019

Hashina Parveen Anwar Ali
Affiliation:
Xtreme Materials Lab, Engineering Product Development (EPD) Pillar, Singapore University of Technology & Design (SUTD), Singapore 487372, Singapore
Ihor Radchenko
Affiliation:
Xtreme Materials Lab, Engineering Product Development (EPD) Pillar, Singapore University of Technology & Design (SUTD), Singapore 487372, Singapore
Nan Li
Affiliation:
Center for Integrated Nanotechnologies (CINT), Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
Arief Budiman*
Affiliation:
Xtreme Materials Lab, Engineering Product Development (EPD) Pillar, Singapore University of Technology & Design (SUTD), Singapore 487372, Singapore
*
a)Address all correspondence to this author. e-mail: suriadi@alumni.stanford.edu
Get access

Abstract

Interfaces can influence the mechanical properties of metallic multilayers, even between different combinations of face-centered cubic (FCC)/body-centered cubic (BCC) constituents, as reported from many experiments. Recent literature has shown promise for fracture being delayed or even stopped at these interfaces. However, no studies have investigated the influence of their constituents on the subsequent mechanisms of fracture leading to failure. We performed in situ microfracture bending tests of the notched clamped beams made from physical vapor deposited Cu/Nb and Al/Nb multilayers. A catastrophic, linear elastic, brittle fracture was observed for the Cu/Nb beams, whereas a more delayed fracture with a gradual crack propagation was observed for the Al/Nb beams. These observations reveal differences in mechanisms because of the FCC element, interface/boundary blocking of dislocation motion, and effect of grain boundaries in the multilayers. Through this study, FCC/BCC metallic multilayers can be designed with enhanced fracture resistance and mechanical strength.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Misra, A. and Hoagland, R.G.: Dekker Encyclopedia of Nanoscience and Nanotechnology, 3rd ed. (CRC Press, Boca Raton, FL, 2011); pp. 110.Google Scholar
Wang, J., Zhou, Q., Shao, S., and Misra, A.: Strength and plasticity of nanolaminated materials. Mater. Res. Lett. 5, 1 (2017).CrossRefGoogle Scholar
Deng, X., Chawla, N., Chawla, K.K., Koopman, M., and Chu, J.P.: Mechanical behavior of multilayered nanoscale metal–ceramic composites. Adv. Eng. Mater. 7, 1099 (2005).CrossRefGoogle Scholar
Lotfian, S., Mayer, C., Chawla, N., Llorca, J., Misra, A., Baldwin, J., and Molina-Aldareguía, J.: Effect of layer thickness on the high temperature mechanical properties of Al/SiC nanolaminates. Thin Solid Films 571, 260 (2014).CrossRefGoogle Scholar
Hwang, B., Kim, W., Kim, J., Lee, S., Lim, S., Kim, S., Oh, S.H., Ryu, S., and Han, S.M.: Role of graphene in reducing fatigue damage in Cu/Gr nanolayered composite. Nano Lett. 17, 4740 (2017).CrossRefGoogle ScholarPubMed
Kim, Y., Lee, J., Yeom, M.S., Shin, J.W., Kim, H., Cui, Y., Kysar, J.W., Hone, J., Jung, Y., Jeon, S., and Han, S.M.: Strengthening effect of single-atomic-layer graphene in metal-graphene nanolayered composites. Nat. Commun. 4, 2114 (2013).CrossRefGoogle ScholarPubMed
Misra, A.: Mechanical behavior of metallic nanolaminates. Nanostruct. Control Mater. 7, 146 (2006).CrossRefGoogle Scholar
Baumann, J., Liebemann, E., Simon, M., and Bucher, E.: Growth, structural study, and thermal stability of metallic Al/Nb superlattices. Phys. Rev. B 45, 3778 (1992).CrossRefGoogle ScholarPubMed
Misra, A., Hoagland, R., and Kung, H.: Thermal stability of self-supported nanolayered Cu/Nb films. Philos. Mag. 84, 1021 (2004).CrossRefGoogle Scholar
Moszner, F., Cancellieri, C., Chiodi, M., Yoon, S., Ariosa, D., Janczak-Rusch, J., and Jeurgens, L.: Thermal stability of Cu/W nano-multilayers. Acta Mater. 107, 345 (2016).CrossRefGoogle Scholar
Misra, A., Demkowicz, M., Zhang, X., and Hoagland, R.: The radiation damage tolerance of ultra-high strength nanolayered composites. JOM 59, 62 (2007).CrossRefGoogle Scholar
Beyerlein, I., Caro, A., Demkowicz, M., Mara, N., Misra, A., and Uberuaga, B.: Radiation damage tolerant nanomaterials. Mater. Today 16, 443 (2013).CrossRefGoogle Scholar
Anwar Ali, H.P., Radchenko, I., Zhou, J., Qing, L., and Budiman, A.: Designing novel multilayered nanocomposites for high-performance coating materials with online strain monitoring capability. Proc. Inst. Mech. Eng., Part L 1, 1–12 (2017). doi: 10.1177/1464420717695354.Google Scholar
Misra, A., Hirth, J., and Hoagland, R.: Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater. 53, 4817 (2005).CrossRefGoogle Scholar
de Boer, F., Boom, R., Mattens, W., Miedema, A., and Niessen, A.: Cohesion in Metals: Transition Metal Alloys (North-Holland, Amsterdam, 1988).Google Scholar
Fu, E., Li, N., Misra, A., Hoagland, R., Wang, H., and Zhang, X.: Mechanical properties of sputtered Cu/V and Al/Nb multilayer films. Mater. Sci. Eng., A 493, 283 (2008).CrossRefGoogle Scholar
Kim, Y., Budiman, A.S., Baldwin, J.K., Mara, N.A., Misra, A., and Han, S.M.: Microcompression study of Al–Nb nanoscale multilayers. J. Mater. Res. 27, 592 (2012).CrossRefGoogle Scholar
Mara, N., Bhattacharyya, D., Dickerson, P., Hoagland, R., and Misra, A.: Deformability of ultrahigh strength 5 nm Cu/Nb nanolayered composites. Appl. Phys. Lett. 92, 1901 (2008).CrossRefGoogle Scholar
Mara, N., Bhattacharyya, D., Hirth, J., Dickerson, P., and Misra, A.: Mechanism for shear banding in nanolayered composites. Appl. Phys. Lett. 97, 021909 (2010).CrossRefGoogle Scholar
Wang, J., Hoagland, R., Hirth, J., and Misra, A.: Atomistic modeling of the interaction of glide dislocations with “weak” interfaces. Acta Mater. 56, 5685 (2008).CrossRefGoogle Scholar
Wang, J., Misra, A., Hoagland, R., and Hirth, J.: Slip transmission across fcc/bcc interfaces with varying interface shear strengths. Acta Mater. 60, 1503 (2012).CrossRefGoogle Scholar
Li, N., Wang, J., Huang, J., Misra, A., and Zhang, X.: In situ TEM observations of room temperature dislocation climb at interfaces in nanolayered Al/Nb composites. Scr. Mater. 63, 363 (2010).CrossRefGoogle Scholar
Li, N., Wang, J., Misra, A., and Huang, J.Y.: Direct observations of confined layer slip in Cu/Nb multilayers. Microsc. Microanal. 18, 1155 (2012).CrossRefGoogle ScholarPubMed
Demkowicz, M. and Hoagland, R.: Structure of Kurdjumov–Sachs interfaces in simulations of a copper–niobium bilayer. J. Nucl. Mater. 372, 45 (2008).CrossRefGoogle Scholar
Demkowicz, M., Hoagland, R., and Hirth, J.: Interface structure and radiation damage resistance in Cu–Nb multilayer nanocomposites. Phys. Rev. Lett. 100, 136102 (2008).CrossRefGoogle ScholarPubMed
Wang, J., Hoagland, R., Hirth, J., and Misra, A.: Atomistic simulations of the shear strength and sliding mechanisms of copper–niobium interfaces. Acta Mater. 56, 3109 (2008).CrossRefGoogle Scholar
Hoagland, R., Hirth, J., and Misra, A.: On the role of weak interfaces in blocking slip in nanoscale layered composites. Philos. Mag. 86, 3537 (2006).CrossRefGoogle Scholar
Budiman, A., Narayanan, K.R., Li, N., Wang, J., Tamura, N., Kunz, M., and Misra, A.: Plasticity evolution in nanoscale Cu/Nb single-crystal multilayers as revealed by synchrotron X-ray microdiffraction. Mater. Sci. Eng., A 635, 6 (2015).CrossRefGoogle Scholar
Radchenko, I., Tippabhotla, S., Tamura, N., and Budiman, A.: Probing phase transformations and microstructural evolutions at the small scales: Synchrotron X-ray microdiffraction for advanced applications in 3D IC (integrated circuits) and solar PV (photovoltaic) devices. J. Electron. Mater. 45, 6222 (2016).CrossRefGoogle Scholar
Zechner, J. and Kolednik, O.: Fracture resistance of aluminum multilayer composites. Eng. Fract. Mech. 110, 489 (2013).CrossRefGoogle Scholar
Wiklund, U., Hedenqvist, P., and Hogmark, S.: Multilayer cracking resistance in bending. Surf. Coat. Technol. 97, 773 (1997).CrossRefGoogle Scholar
Voevodin, A.A., Iarve, E.V., Ragland, W., Zabinski, J., and Donaldson, S.: Stress analyses and in-situ fracture observation of wear protective multilayer coatings in contact loading. Surf. Coat. Technol. 148, 38 (2001).CrossRefGoogle Scholar
Wu, K., Zhang, J., Liu, G., Zhang, P., Cheng, P., Li, J., Zhang, G., and Sun, J.: Buckling behaviors and adhesion energy of nanostructured Cu/X (X = Nb, Zr) multilayer films on a compliant substrate. Acta Mater. 61, 7889 (2013).CrossRefGoogle Scholar
Zhang, J., Zhang, X., Wang, R., Lei, S., Zhang, P., Niu, J., Liu, G., Zhang, G., and Sun, J.: Length-scale-dependent deformation and fracture behavior of Cu/X (X = Nb, Zr) multilayers: The constraining effects of the ductile phase on the brittle phase. Acta Mater. 59, 7368 (2011).CrossRefGoogle Scholar
Hattar, K., Misra, A., Dosanjh, M., Dickerson, P., Robertson, I., and Hoagland, R.: Direct observation of crack propagation in copper-niobium multilayers. J. Eng. Mater. Technol. 134, 021014 (2012).CrossRefGoogle Scholar
Mara, N., Bhattacharyya, D., Hoagland, R., and Misra, A.: Tensile behavior of 40 nm Cu/Nb nanoscale multilayers. Scr. Mater. 58, 874 (2008).CrossRefGoogle Scholar
Josell, D., Van Heerden, D., Read, D., Bonevich, J., and Shechtman, D.: Tensile testing low density multilayers: Aluminum/titanium. J. Mater. Res. 13, 2902 (1998).CrossRefGoogle Scholar
Jaya, B.N., Jayaram, V., and Biswas, S.K.: A new method for fracture toughness determination of graded (Pt, Ni) Al bond coats by microbeam bend tests. Philos. Mag. 92, 3326 (2012).CrossRefGoogle Scholar
Kumar, S., Zhuo, D., Wolfe, D., Eades, J., and Haque, M.: Length-scale effects on fracture of multilayers. Scr. Mater. 63, 196 (2010).CrossRefGoogle Scholar
Mayer, C., Li, N., Mara, N., and Chawla, N.: Micromechanical and in situ shear testing of Al–SiC nanolaminate composites in a transmission electron microscope (TEM). Mater. Sci. Eng., A 621, 229 (2015).CrossRefGoogle Scholar
Jaya, B.N., Kirchlechner, C., and Dehm, G.: Can microscale fracture tests provide reliable fracture toughness values? A case study in silicon. J. Mater. Res. 30, 686 (2015).CrossRefGoogle Scholar
Radchenko, I., Anwar Ali, H.P., Tippabhotla, S.K., and Budiman, A.S.: Effects of interface shear strength during failure of semicoherent metal-metal nanolaminates: An example of accumulative roll-bonded Cu/Nb. Acta Mater. 156, 125 (2018).CrossRefGoogle Scholar
Mitchell, T.E., Lu, Y.C., Nastasi, M., Kung, H., and others: Structure and mechanical properties of copper/niobium multilayers. J. Am. Ceram. Soc. 80, 1673 (1997).CrossRefGoogle Scholar
Heidelberg, A., Ngo, L.T., Wu, B., Phillips, M.A., Sharma, S., Kamins, T.I., Sader, J.E., and Boland, J.J.: A generalized description of the elastic properties of nanowires. Nano Lett. 6, 1101 (2006).CrossRefGoogle ScholarPubMed
Devlin, J.F.: Stacking fault energies of Be, Mg, Al, Cu, Ag, and Au. J. Phys. F: Met. Phys. 4, 1865 (1974).CrossRefGoogle Scholar
McEvily, A. and Boettner, R.: On fatigue crack propagation in FCC metals. Acta Metall. 11, 725 (1963).CrossRefGoogle Scholar
Cui, C. and Beom, H.: Molecular dynamics simulations of edge cracks in copper and aluminum single crystals. Mater. Sci. Eng., A 609, 102 (2014).CrossRefGoogle Scholar
Wang, J. and Misra, A.: An overview of interface-dominated deformation mechanisms in metallic multilayers. Curr. Opin. Solid State Mater. Sci. 15, 20 (2011).CrossRefGoogle Scholar
Kang, K., Wang, J., and Beyerlein, I.: Atomic structure variations of mechanically stable fcc–bcc interfaces. J. Appl. Phys. 111, 053531 (2012).CrossRefGoogle Scholar
Hoagland, R.G., Kurtz, R.J., and Henager, C.H.: Slip resistance of interfaces and the strength of metallic multilayer composites. Scr. Mater. 50, 775 (2004).CrossRefGoogle Scholar
Wang, J., Hoagland, R.G., and Misra, A.: Phase transition and dislocation nucleation in Cu–Nb layered composites during physical vapor deposition. J. Mater. Res. 23, 1009 (2008).CrossRefGoogle Scholar
Anwar Ali, H.P. and Budiman, A.S.: Designing novel metallic multilayer nanocomposites through atomic engineering of interfaces-influence of heat of mixing. Procedia Eng. 215, 226 (2017).CrossRefGoogle Scholar
Wang, J., Hoagland, R., Liu, X., and Misra, A.: The influence of interface shear strength on the glide dislocation-interface interactions. Acta Mater. 59, 3164 (2011).CrossRefGoogle Scholar
Misra, A. and Hoagland, R.: Plastic flow stability of metallic nanolaminate composites. J. Mater. Sci. 42, 1765 (2007).CrossRefGoogle Scholar
Hutchinson, J.W. and Suo, Z.: Mixed mode cracking in layered materials. Adv. Appl. Mech. 29, 63 (1991).CrossRefGoogle Scholar
Was, G. and Foecke, T.: Deformation and fracture in microlaminates. Thin Solid Films 286, 1 (1996).CrossRefGoogle Scholar
Alfreider, M., Kozic, D., Kolednik, O., and Kiener, D.: In situ elastic–plastic fracture mechanics on the microscale by means of continuous dynamical testing. Mater. Des. 148, 177 (2018).CrossRefGoogle Scholar
Iqbal, F., Ast, J., Göken, M., and Durst, K.: In situ micro-cantilever tests to study fracture properties of NiAl single crystals. Acta Mater. 60, 1193 (2012).CrossRefGoogle Scholar
Wurster, S., Motz, C., and Pippan, R.: Characterization of the fracture toughness of micro-sized tungsten single crystal notched specimens. Philos. Mag. 92, 1803 (2012).CrossRefGoogle Scholar
Zhou, Q., Zhang, S., Wei, X., Wang, F., Huang, P., and Xu, K.: Improving the crack resistance and fracture toughness of Cu/Ru multilayer thin films via tailoring the individual layer thickness. J. Alloys Compd. 742, 45 (2018).CrossRefGoogle Scholar
Zhang, J., Zhang, X., Liu, G., Zhang, G., and Sun, J.: Dominant factor controlling the fracture mode in nanostructured Cu/Cr multilayer films. Mater. Sci. Eng., A 528, 2982 (2011).CrossRefGoogle Scholar
Zhang, J., Liu, G., Zhang, X., Zhang, G., Sun, J., and Ma, E.: A maximum in ductility and fracture toughness in nanostructured Cu/Cr multilayer films. Scr. Mater. 62, 333 (2010).CrossRefGoogle Scholar
Li, Y. and Zhang, G.: On plasticity and fracture of nanostructured Cu/X (X = Au, Cr) multilayers: The effects of length scale and interface/boundary. Acta Mater. 58, 3877 (2010).CrossRefGoogle Scholar
Xu, W. and Dávila, L.P.: Size dependence of elastic mechanical properties of nanocrystalline aluminum. Mater. Sci. Eng., A 692, 90 (2017).CrossRefGoogle Scholar
Kern, Werner: Thin Film Processes II. (Cambridge, MA: Academic Press, 2012). doi: https://doi.org/10.1016/C2009-0-22311-7Google Scholar
Ovid’Ko, I.: Review on the fracture processes in nanocrystalline materials. J. Mater. Sci. 42, 1694 (2007).CrossRefGoogle Scholar
Yang, F. and Yang, W.: Brittle versus ductile transition of nanocrystalline metals. Int. J. Solid Struct. 45, 3897 (2008).CrossRefGoogle Scholar
Li, N., Martin, M., Anderoglu, O., Misra, A., Shao, L., Wang, H., and Zhang, X.: He ion irradiation damage in Al/Nb multilayers. J. Appl. Phys. 105, 123522 (2009).CrossRefGoogle Scholar

Anwar Ali et al. supplementary material

Anwar Ali et al. supplementary material 1

Download Anwar Ali et al. supplementary material(Video)
Video 5 MB

Anwar Ali et al. supplementary material

Anwar Ali et al. supplementary material 2

Download Anwar Ali et al. supplementary material(Video)
Video 2.4 MB