Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-25T21:40:36.642Z Has data issue: false hasContentIssue false

Effect of mobile cation on zeolite-polyamide thin film nanocomposite membranes

Published online by Cambridge University Press:  31 January 2011

Byeong-Heon Jeong
Affiliation:
UCLA Civil & Environmental Engineering Department, and California NanoSystems Institute, University of California—Los Angeles, Los Angeles, California 90095
Arun Subramani
Affiliation:
UCLA Civil & Environmental Engineering Department, and California NanoSystems Institute, University of California—Los Angeles, Los Angeles, California 90095
Eric M.V. Hoek*
Affiliation:
UCLA Civil & Environmental Engineering Department, and California NanoSystems Institute, University of California—Los Angeles, Los Angeles, California 90095
*
c) Address all correspondence to this author. e-mail: hoek@seas.ucla.edu
Get access

Abstract

Hybrid zeolite-polyamide thin film nanocomposite (TFN) reverse osmosis membranes were synthesized by incorporating Linde type A (LTA)-type zeolite molecular sieve nanocrystals in the interfacial polymerization reaction used to form polyamide thin films. Nanocrystals were prepared with two different mobile cations (Na+ and Ag+) exchanged within the LTA crystal matrix. Incorporation of molecular sieve nanocrystals into polyamide thin films during interfacial polymerization was verified by infrared spectroscopy. Both TFN membranes exhibited higher water permeability, while maintaining similar salt rejection to pure polyamide thin film composite membranes. Nanocomposite thin films containing LTA nanocrystals in the silver form (AgA) produced a greater increase in water permeability than those in the sodium form (NaA). Furthermore, AgA-TFN membranes exhibited more hydrophilic and smooth interfaces, which appeared to inhibit adhesion of bacteria cells onto the membranes. The AgA nanocrystals exhibited significant bactericidal activity; however, when encapsulated within polyamide thin films the antimicrobial activity was significantly reduced.

Type
Outstanding Symposium Papers
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Elimelech, M.: The global challenge for adequate and safe water. J. Water Supply Res Technol. Aqua 55, 3 (2006).CrossRefGoogle Scholar
2.Savage, N. and Diallo, M.S.: Nanomaterials and water purification: Opportunities and challenges., J. Nanopart. Res. 7, 331 (2005).CrossRefGoogle Scholar
3.Hoek, E.M.V. and Ghosh, A.K.: Nanotechnology-based Membranes for Water Purification, Nanotechnology Applications: Solutions for Improving Water Quality (Elsevier, Atlanta, GA, 2008).Google Scholar
4.Lee, H.S., Im, S.J., Kim, J.H., Kim, H.J., Kim, J.P., and Min, B.R.: Polyamide thin-film nanofiltration membranes containing TiO2nanoparticles. Desalination 219, 48 (2008).CrossRefGoogle Scholar
5.Jeong, B.H., Hoek, E.M.V., Yan, Y.S., Subramani, A., Huang, X.F., Hurwitz, G., Ghosh, A.K., and Jawor, A.: Interfacial polymerization of thin film nanocomposites: A new concept for reverse osmosis membranes., J. Membr. Sci. 294, 1 (2007).CrossRefGoogle Scholar
6.Ghosh, A.K., Jeong, B.H., Huang, X.F., and Hoek, E.M.V.: Impacts of reaction and curing conditions on polyamide composite reverse osmosis membrane properties., J. Membr. Sci. 311, 34 (2008).CrossRefGoogle Scholar
7.Vrijenhoek, E.M., Hong, S., and Elimelech, M.: Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes. J. Membr. Sci. 188, 115 (2001).CrossRefGoogle Scholar
8.Wang, S., Guillen, G., and Hoek, E.M.V.: Direct observation of microbial adhesion to mermbranes. Environ. Sci. Technol. 39, 6461 (2005).CrossRefGoogle Scholar
9.Subramani, A. and Hoek, E.M.V.: Direct observation of initial microbial deposition onto reverse osmosis and nanofiltration membranes., J. Membr. Sci. 319, 111 (2008).CrossRefGoogle Scholar
10.Kang, S.T., Subramani, A., Hoek, E.M.V., Deshusses, M.A., and Matsumoto, M.R.: Direct observation of biofouling in cross-flow microfiltration: Mechanisms of deposition and release., J. Membr. Sci. 244, 151 (2004).CrossRefGoogle Scholar
11.Pasmore, M., Todd, P., Smith, S., Baker, D., Silverstein, J., Coons, D., and Bowman, C.N.: Effects of ultrafiltration membrane surface properties on Pseudomonas aeruginosa biofilm initiation for the purpose of reducing biofouling., J. Membr. Sci. 194, 15 (2001).CrossRefGoogle Scholar
12.Li, Y., Chung, T.S., and Kulprathipanja, S.: Novel Ag+-zeolite/polymer mixed matrix membranes with a high CO2/CH4 selectivity. AIChE J. 53, 610 (2007).CrossRefGoogle Scholar
13.Kim, S. and Hoek, E.M.V.: Interactions controlling biopolymer fouling of reverse osmosis membranes. Desalination 202, 333 (2007).CrossRefGoogle Scholar
14.Singh, P.S., Joshi, S.V., Trivedi, J.J., Devmurari, C.V., Rao, A.P., and Ghosh, P.K.: Probing the structural variations of thin film composite RO membranes obtained by coating polyamide over polysulfone membranes of different pore dimensions. J. Membr. Sci. 278, 19 (2006).CrossRefGoogle Scholar
15.Rao, A.P., Joshi, S.V., Trivedi, J.J., Devmurari, C.V., and Shah, V.J.: Structure-performance correlation of polyamide thin film composite membranes: Effect of coating conditions on film formation. J. Membr. Sci. 211, 13 (2003).Google Scholar
16.Urban, M.W.: Vibrational Spectroscopy of Molecules and Macro-molecules on Surfaces (John Wiley & Sons, Inc., New York, 1993).Google Scholar
17.Kyotani, T., Shimotsuma, N., and Kakui, S.: FTIR-ATR study of the surface of a tubular zeolite NaA membrane ultrasonically reacted with water and acetic acid. Anal. Sci. 22, 325 (2006).CrossRefGoogle ScholarPubMed
18.Alfaro, S., Rodriguez, C., Valenzuela, M.A., and Bosch, P.: Aging time effect on the synthesis of small crystal LTA zeolites in the absence of organic template. Mater. Lett. 61, 4655 (2007).CrossRefGoogle Scholar
19.Zhao, G.J. and Stevens, S.E.: Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion. Biometals 11, 27 (1998).CrossRefGoogle Scholar
20.Sondi, I. and Salopek-Sondi, B.: Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for gram-negative bacteria. J. Colloid Interface Sci. 275, 177 (2004).CrossRefGoogle Scholar
21.McDonnell, A.M.P., Beving, D., Wang, A.J., Chen, W., and Yan, Y.S.: Hydrophilic and antimicrobial zeolite coatings for gravity-independent water separation. Adv. Fund. Mater. 15, 336 (2005).CrossRefGoogle Scholar
22.Ostomel, T.A., Stoimenov, P.K., Holden, P.A., Alam, H.B., and Stucky, G.D.: Host-guest composites for induced hemostasis and therapeutic healing in traumatic injuries. J. Thromb. Thromboly-sis 22, 55 (2006).CrossRefGoogle ScholarPubMed
23.Kwak, S.Y., Kim, S.H., and Kim, S.S.: Hybrid organic/inorganic reverse osmosis (RO) membrane for bactericidal anti-fouling. 1. Preparation and characterization of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane. Environ. Sci. Technol. 35, 2388 (2001).CrossRefGoogle ScholarPubMed
24.Tang, C.Y.Y., Kwon, Y.N., and Leckie, J.O.: Probing the nano- and micro-scales of reverse osmosis membranes: A comprehensive characterization of physiochemical properties of uncoated and coated membranes by XPS, TEM, ATR-IR, and streaming potential measurements. J. Membr. Sci. 287, 146 (2007).CrossRefGoogle Scholar
25.Flemming, H.C., Schaule, G., Griebe, T., Schmitt, J., and Tamachkiarowa, A.: Biofouling: The Achilles heel of membrane processes. Desalination 113, 215 (1997).CrossRefGoogle Scholar