Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T15:48:47.409Z Has data issue: false hasContentIssue false

Effect of lithium carbonate on the sintering, microstructure, and functional properties of sol–gel-derived Ba0.85Ca0.15Zr0.1Ti0.9O3 piezoceramics

Published online by Cambridge University Press:  28 August 2020

Bo Nan
Affiliation:
School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan430074, P.R. China CEITEC – Central European Institute of Technology, Brno University of Technology, Brno612 00, Czechia
Aleš Matoušek
Affiliation:
CEITEC – Central European Institute of Technology, Brno University of Technology, Brno612 00, Czechia
Pavel Tofel
Affiliation:
CEITEC – Central European Institute of Technology, Brno University of Technology, Brno612 00, Czechia
Vijay Bijalwan
Affiliation:
CEITEC – Central European Institute of Technology, Brno University of Technology, Brno612 00, Czechia
Tim Button
Affiliation:
School of Metallurgy and Materials, University of Birmingham, BirminghamB15 2TT, UK
Lisong Li
Affiliation:
School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan430074, P.R. China
Pengyuan Fan
Affiliation:
School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan430074, P.R. China
Haibo Zhang*
Affiliation:
School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan430074, P.R. China Engineering Research Centre for Functional Ceramics, Ministry of Education, Huazhong University of Science and Technology, Wuhan430074, P.R. China
*
a)Address all correspondence to this author. e-mail: pyfan@hust.edu.cn, hbzhang@hust.edu.cn.
Get access

Abstract

Piezoelectric Ba0.85Ca0.15Zr0.1Ti0.9O3 (BCZT) has been found to be a competitive lead-free piezoceramic candidate and was prepared by a sol–gel technique due to its small particle size and homogeneous particle size distribution, but the sintering temperature is still quite high in the previous reports. In the present paper, lithium carbonate (Li2CO3) was used as a sintering aid and dopant for the sol–gel-derived piezoceramic powder, to facilitate the sintering process and adjust the densification, the microstructures and functional properties. With the addition of 0.5 wt% Li2CO3 sintered at 1300 °C, a high relative density 96% with piezoelectric coefficient d33 ~447 pC/N, planar coupling coefficient kp ~0.51, and Curie point TC ~98.7 °C was obtained. The way to properly define the critical changing points on temperature-dependent dielectric curves were further discussed. By altering sintering temperature and the amount of dopant, the mutual influence between the microstructures and the functional properties was explained, to further guide shaping BCZT in more complexed connectivities.

Type
Invited Paper
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Shrout, T.R. and Zhang, S.J.: Lead-free piezoelectric ceramics: Alternatives for PZT? J. Electroceram. 19, 111 (2007).CrossRefGoogle Scholar
Liu, W. and Ren, X.: Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 103, 1 (2009).CrossRefGoogle ScholarPubMed
Castkova, K., Maca, K., Cihlar, J., Hughes, H., Matousek, A., Tofel, P., Bai, Y., and Button, T.W.: Chemical synthesis, sintering and piezoelectric properties of Ba0.85Ca0.15 Zr0.1Ti0.9O3 lead-free ceramics. J. Am. Ceram. Soc. 98, 2373 (2015).CrossRefGoogle Scholar
Bai, Y., Matousek, A., Tofel, P., Bijalwan, V., Nan, B., Hughes, H., and Button, T.W.: (Ba,Ca)(Zr,Ti)O3 lead-free piezoelectric ceramics – The critical role of processing on properties. J. Eur. Ceram. Soc. 35, 3445 (2015).CrossRefGoogle Scholar
Shu, C., Reed, D., and Button, T.W.: A phase diagram of Ba1-xCaxTiO3 (x=0-0.30) piezoceramics by Raman spectroscopy. J. Am. Ceram. Soc. 101, 2589 (2018).CrossRefGoogle Scholar
Li, W., Xu, Z., Chu, R., Fu, P., and Zang, G.: High piezoelectric d33 coefficient in (Ba1-xCa x)(Ti0.98Zr0.02)O3 lead-free ceramics with relative high Curie temperature. Mater. Lett. 64, 2325 (2010).CrossRefGoogle Scholar
Tang, X.G. and Chan, H.L.W.: Effect of grain size on the electrical properties of (Ba,Ca)(Zr,Ti)O3 relaxor ferroelectric ceramics. J. Appl. Phys. 97, 034109 (2005).CrossRefGoogle Scholar
Martirena, H.T. and Burfoot, J.C.: Grain-size effects on properties of some ferroelectric ceramics. J. Phys. C Solid State Phys. 7, 3182 (1974).CrossRefGoogle Scholar
Wang, Z., Wang, J., Chao, X., Wei, L., Yang, B., Wang, D., and Yang, Z.: Synthesis, structure, dielectric, piezoelectric, and energy storage performance of (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 ceramics prepared by different methods. J. Mater. Sci. Mater. Electron 27, 5047 (2016).CrossRefGoogle Scholar
Mahajan, S., Thakur, O.P., Bhattacharya, D.K., and Sreenivas, K.: A comparative study of Ba0.95Ca0.05Zr0.25Ti0.75O3 relaxor ceramics prepared by conventional and microwave sintering techniques. Mater. Chem. Phys. 112, 858 (2008).CrossRefGoogle Scholar
Liu, Y., Pu, Y., and Sun, Z.: Enhanced relaxor ferroelectric behavior of BCZT lead-free ceramics prepared by hydrothermal method. Mater. Lett. 137, 128 (2014).CrossRefGoogle Scholar
Ye, S., Fuh, J., Lu, L., Chang, Y.L., and Yang, J.R.: Structure and properties of hot-pressed lead-free (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 piezoelectric ceramics. RSC Adv. 3, 20693 (2013).CrossRefGoogle Scholar
Yan, X. and Peng, B.: Microstructure and electrical properties of (Ba0.85Ca0.15)(Zr0.10Ti0.90)O3 lead-free piezoelectric ceramics prepared by spark plasma sintering. J. Mater. Sci. Mater. Electron 26, 9649 (2015).CrossRefGoogle Scholar
Frattini, A., Di Loreto, A., de Sanctis, O., and Benavidez, E.: BCZT Ceramics prepared from activated powders. Procedia Mater. Sci. 1, 359 (2012).CrossRefGoogle Scholar
Chen, T., Zhang, T., Wang, G., Zhou, J., Zhang, J., and Liu, Y.: Effect of CuO on the microstructure and electrical properties of Ba0.85Ca0.15Ti0.90Zr0.10O3 piezoceramics. J. Mater. Sci. 47, 4612 (2012).CrossRefGoogle Scholar
Liu, X., Chen, Z., Wu, D., Fang, B., Ding, J., Zhao, X., Xu, H., and Luo, H.: Enhancing pyroelectric properties of Li-doped (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead-free ceramics by optimizing calcination temperature. Jpn. J. Appl. Phys. 54, 071501 (2015).CrossRefGoogle Scholar
Wang, X., Liang, P., Chao, X., and Yang, Z.: Dielectric properties and impedance spectroscopy of MnCO3-modified (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead-free ceramics. J. Am. Ceram. Soc. 98, 1506 (2015).CrossRefGoogle Scholar
Wu, J., Wu, W., Xiao, D., Wang, J., Yang, Z., Peng, Z., Chen, Q., and Zhu, J.: (Ba,Ca)(Ti,Zr)O3-BiFeO3 lead-free piezoelectric ceramics. Curr. Appl. Phys. Lett. 12, 534 (2012).CrossRefGoogle Scholar
Chao, X., Wang, J., Liang, P., Zhang, T., Wei, L., and Yang, Z.: Phase transition and improved electrical performance of Ba0.85Ca0.15Zr0.1Ti0.9O3-Ca0.28Ba0.72Nb2O6 ceramics with high Curie temperature. Mater. Des. 89, 465 (2016).CrossRefGoogle Scholar
Wu, J., Xiao, D., Wu, W., Chen, Q., Zhu, J., Yang, Z., and Wang, J.: Role of room-temperature phase transition in the electrical properties of (Ba, Ca)(Ti, Zr)O3 ceramics. Scr. Mater. 65, 771 (2011).CrossRefGoogle Scholar
Kakihana, M.: Invited review “sol-gel” preparation of high temperature superconducting oxides. J. Sol-Gel Sci. Technol. 6, 7 (1996).CrossRefGoogle Scholar
Park, G.T., Choi, J.J., Park, C.S., Lee, J.W., and Kim, H.E.: Piezoelectric and ferroelectric properties of 1-μm-thick lead zirconate titanate film fabricated by a double-spin-coating process. Appl. Phys. Lett. 85, 2322 (2004).CrossRefGoogle Scholar
Natsume, Y. and Sakata, H.: Zinc oxide films prepared by sol-gel spin-coating. Thin Solid Films 372, 30 (2000).CrossRefGoogle Scholar
Duoss, E.B., Twardowski, M., and Lewis, J.A.: Sol-gel inks for direct-write assembly of functional oxides. Adv. Mater. 19, 3485 (2007).CrossRefGoogle Scholar
Destino, J.F., Dudukovic, N.A., Johnson, M.A., Nguyen, D.T., Yee, T.D., Egan, G.C., Sawvel, A.M., Steele, W.A., Baumann, T.F., Duoss, E.B., Suratwala, T., and Dylla-Spears, R.: 3D Printed optical quality silica and silica–titania glasses from sol–gel feedstocks. Adv. Mater. Technol. 3, 1 (2018).Google Scholar
Stashans, A. and Chimborazo, J.: Effect of interstitial hydrogen on structural and electronic properties of BaTiO3. Philos. Mag. B Phys. Condens. Matter; Stat. Mech. Electron. Opt. Magn. Prop. 82, 1145 (2002).Google Scholar
Ito, T.U., Koda, A., Shimomura, K., Higemoto, W., Matsuzaki, T., Kobayashi, Y., and Kageyama, H.: Excited configurations of hydrogen in the BaTiO3-xHx perovskite lattice associated with hydrogen exchange and transport. Phys. Rev. B 95, 1 (2017).CrossRefGoogle Scholar
Coondoo, I., Panwar, N., Amorín, H., Ramana, V.E., Algueró, M., and Kholkin, A.: Enhanced piezoelectric properties of praseodymium-modified lead-free (Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 ceramics. J. Am. Ceram. Soc. 98, 3127 (2015).CrossRefGoogle Scholar
Tan, C.K.I., Yao, K., and Ma, J.: Effects of LiF on the structure and properties of Ba0.85Ca 0.15Zr0.1Ti0.9O3 lead-free piezoelectric ceramics. Int. J. Appl. Ceram. Technol. 10, 701 (2013).CrossRefGoogle Scholar
Chen, X., Ruan, X., Zhao, K., He, X., Zeng, J., Li, Y., Zheng, L., Park, C.H., and Li, G.: Low sintering temperature and high piezoelectric properties of Li-doped (Ba,Ca)(Ti,Zr)O3 lead-free ceramics. J. Alloys Compd. 632, 103 (2015).CrossRefGoogle Scholar
Chen, X., Li, Y., Zeng, J., Zheng, L., Park, C.H., and Li, G.: Phase transition and large electrostrain in lead-free Li-doped (Ba, Ca)(Ti, Zr)O3 ceramics. J. Am. Ceram. Soc. 99, 2170 (2016).CrossRefGoogle Scholar
Patnaik, P.: Handbook of Inorganic Chemicals (McGraw-Hill, New York, 2003), pp. 497.Google Scholar
Tang, B., Zhang, S.R., Yuan, Y., Yang, L.B., and Zhou, X.H.: Influence of tetragonality and secondary phase on the Curie temperature for barium titanate ceramics. J. Mater. Sci. Mater. Electron 19, 1109 (2008).CrossRefGoogle Scholar
Kuwabara, M., Matsuda, H., Kurata, N., and Matsuyama, E.: Shift of the Curie point of barium titanate ceramics with sintering temperature. J. Am. Ceram. Soc. 80, 2590 (1997).CrossRefGoogle Scholar
Baeten, F., Derks, B., Coppens, W., and van Kleef, E.: Barium titanate characterization by differential scanning calorimetry. J. Eur. Ceram. Soc. 26, 589 (2006).CrossRefGoogle Scholar
Lee, S., Liu, Z.K., Kim, M.H., and Randall, C.A.: Influence of nonstoichiometry on ferroelectric phase transition in BaTiO3. J. Appl. Phys. 101, 054119-4 (2007).Google Scholar
Jaffe, B., Cook, W.R. Jr., and Jaffe, H.: The Piezoelectric Effect in Ceramics. Piezoelectric Ceramics (Academic Press, London and New York, 1971), pp. 721.Google Scholar
Abhinay, S., Mazumder, R., Seal, A., and Sen, A.: Tape casting and electrical characterization of 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 (BZT–0.5BCT) piezoelectric substrate. J. Eur. Ceram. Soc. 5 (2016).Google Scholar
Nan, B., Olhero, S., Pinho, R., Vilarinho, P.M., Button, T.W., and Ferreira, J.M.F.: Direct ink writing of macroporous lead-free piezoelectric Ba0.85Ca0.15Zr0.1Ti0.9O3. J. Am. Ceram. Soc 102, 3191 (2018).CrossRefGoogle Scholar
Heywang, W., Lubitz, K., and Wersing, W.: Piezoelectricity: evolution and future of a technology. In Chapter 17 in Part III Characterisation Methods, Hoffmann, M.J., Kungl, H., Theissmann, R., and Wagner, S., eds. (Springer Science & Business Media, Germany, 2008); pp. 414.Google Scholar
Wurst, J.C. and Nelson, J.A.: Linear intercept technique for measuring grain-size in 2-phase polycrystalline ceramics. J. Am. Ceram. Soc. 55, 109 (1972).CrossRefGoogle Scholar
Berlincourt, D., Kinsley, T., Lambert, T.M., Schwartz, D., Gerber, E.A., and Fair, I.E.: IRE Standards on piezoelectric crystals: Measurements of piezoelectric ceramics, 1961. Proc. IRE 49, 1161 (1961).Google Scholar
Fialka, J. and Beneš, P.: Comparison of methods for the piezoelectric coefficients measurement. Control Instrum. 62, 1047 (2013).Google Scholar