Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-25T22:58:53.976Z Has data issue: false hasContentIssue false

Effect of intergranular glass films on the electrical conductivity of 3Y-TZP

Published online by Cambridge University Press:  03 March 2011

M. Gödickemeier
Affiliation:
Nichtmetallische Werkstoffe, ETH Zürich, CH-8092 Zürich, Switzerland
B. Michel
Affiliation:
Nichtmetallische Werkstoffe, ETH Zürich, CH-8092 Zürich, Switzerland
A. Orliukas
Affiliation:
Nichtmetallische Werkstoffe, ETH Zürich, CH-8092 Zürich, Switzerland
P. Bohac
Affiliation:
Nichtmetallische Werkstoffe, ETH Zürich, CH-8092 Zürich, Switzerland
K. Sasaki
Affiliation:
Nichtmetallische Werkstoffe, ETH Zürich, CH-8092 Zürich, Switzerland
L. Gauckler
Affiliation:
Nichtmetallische Werkstoffe, ETH Zürich, CH-8092 Zürich, Switzerland
H. Heinrich
Affiliation:
Institut of Applied Physics, ETH-Zürich, CH-8093 Zürich, Switzerland
P. Schwander
Affiliation:
Institut of Applied Physics, ETH-Zürich, CH-8093 Zürich, Switzerland
G. Kostorz
Affiliation:
Institut of Applied Physics, ETH-Zürich, CH-8093 Zürich, Switzerland
H. Hofmann
Affiliation:
Alusuisse Lonza Services AG, CH-8212 Neuhausen, Switzerland
O. Frei
Affiliation:
Alusuisse Lonza Services AG, CH-8212 Neuhausen, Switzerland
Get access

Abstract

The electrical conductivity of 3Y-TZP ceramics containing SiO2 and Al2O3 has been investigated by complex impedance spectroscopy between 500 and 1270 K. At low temperatures, the total electrical conductivity is suppressed by the grain boundary glass films. The equilibrium thickness of intergranular films is 1-2 nm, as derived using the “brick-layer” model and measured by HRTEM. A change in the slope of the conductivity Arrhenius plots occurs at the characteristic temperature Tb at which the macroscopic grain boundary resistivity has the same value as the resistivity of the grains. The temperature dependence of the conductivity is discussed in terms of a series combination of RC elements.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Winnubst, A. J. A., Kroot, P. J. M., and Burggraaf, A. J., J. Phys. Chem. Solids 44, 955 (1983).CrossRefGoogle Scholar
2Winnubst, A. J. A., Verkerk, M. J., and Burggraaf, A. J., in Advances in Ceramics: Vol. 7, edited by Yan, M. F. and Heuer, A. H. (American Ceramic Society, Inc., Westerville, OH, 1983), p. 177.Google Scholar
3Schubert, H., Clausen, N., and Rühle, M., in Advances in Ceramics: Vol. 12, edited by Clausen, N., Rühle, M., and Heuer, A. H. (American Ceramics Society, Inc., Westerville, OH, 1984), p. 766.Google Scholar
4Burggraaf, A. J., Van Hemert, M., Scholten, D., and Winnubst, A. J. A., Mater. Sci. Monogr. 28B, 797 (1985).Google Scholar
5Chaim, R., Brandon, D. G., and Heuer, A. H., Acta Metall. 34, 1933 (1986).CrossRefGoogle Scholar
6Slotwinski, R. K., Bonanos, N., and Butler, E. P., J. Mater. Sci. Lett. 4, 641 (1985).CrossRefGoogle Scholar
7Mecartney, M. L., J. Am. Ceram. Soc. 70, 54 (1987).CrossRefGoogle Scholar
8Verkerk, M. J., Winnubst, A. J. A., and Burggraaf, A. J., J. Mater. Sci. 17, 3113 (1982).CrossRefGoogle Scholar
9Verkerk, M. J., Middelhuis, B. J., and Burggraaf, A. J., Solid State Ionics 6, 159 (1982).CrossRefGoogle Scholar
10Miyayama, M., Yanagida, H., and Asada, A., Am. Ceram. Soc. Bull. 64, 660 (1985).Google Scholar
11Badwal, S. P. S. and Hughes, A. E., in Proc. 2nd Int. Symp. Solid Oxide Fuel Cells, edited by Grosz, F., Zegers, P., Singhal, S. C., and Yamamoto, O. (Commission of European Communities Rep. EUR 13546 EN, Luxembourg, Belgium, 1991), p. 445.Google Scholar
12Clarke, D. R., in Mat. Sci. Res. Vol. 21, edited by Pask, J. A. and Evans, A. G. (Plenum Press, New York and London, 1987), p. 569.Google Scholar
13Clarke, D. R., J. Am. Ceram. Soc. 70, 15 (1987).CrossRefGoogle Scholar
14Badwal, S. P. S. and Drennan, J., J. Mater. Sci. 22, 3231 (1987).CrossRefGoogle Scholar
15Raj, R., J. Am. Ceram. Soc. 64, 245 (1981).CrossRefGoogle Scholar
16Stato, T., Nauer, M., and Carry, C., J. Am. Ceram. Soc. 74, 2615 (1991).CrossRefGoogle Scholar
17Butler, E. P. and Drennan, J., J. Am. Ceram. Soc. 65, 474 (1982).CrossRefGoogle Scholar
18Drennan, J., Swain, M. V., and Badwal, S. P. S., J. Am. Ceram. Soc. 72, 1279 (1989).CrossRefGoogle Scholar
19Badwal, S. P. S., Ciacchi, F. T., Swain, M. V., and Zelizko, V., J. Am. Ceram. Soc. 73, 2505 (1990).CrossRefGoogle Scholar
20Verkerk, M. J. (Ph.D. Thesis, University of Twente, The Netherlands (1982).Google Scholar
21Badwal, S. P. S., J. Mater. Sci. 19, 1767 (1984).CrossRefGoogle Scholar
22Badwal, S. P. S., J. Am. Ceram. Soc. 73, 3718 (1990).CrossRefGoogle Scholar
23Hohnke, D. K., in Fast Ion Transport in Solids, edited by Vaskista, P., Mundy, J. N., and Shenoy, G. K. (Elsevier North-Holland, Inc., New York, 1979), p. 669.Google Scholar
24Nakamura, A. and Wagner, J. B., J. Electrochem. Soc. 133, 1542 (1986).CrossRefGoogle Scholar
25Weller, M. and Schubert, H., J. Am. Ceram. Soc. 69, 573 (1986).CrossRefGoogle Scholar
26Weller, M. and Schubert, H., in Solid State Ionics, edited by Balkanski, M., Takahaski, T., and Tuller, H. L. (Elsevier Science Publishers B. V., Amsterdam, The Netherlands, 1992), p. 569.Google Scholar
27Nowick, A. S. and Park, D. S., in Superionic Conductors, edited by Mahan, G. and Roth, W. (Plenum Press, New York, 1976), p. 395.CrossRefGoogle Scholar
28Badwal, S. P. S., J. Mater. Sci. 18, 3117 (1983).CrossRefGoogle Scholar
29Orliukas, A., Heeb, B., Michel, B., Sasaki, K., Bohac, P., and Gauckler, L., in Proceedings Europ. Ceram. Soc. 2nd Conference, Augsburg, Germany, Sept. 11–14, 1991 (to be published).Google Scholar
30Ohno, H., Nagasaki, T., Ishiyama, T., Katano, Y., and Katsuta, H., J. Nucl. Mater. 141–143, 392 (1986).CrossRefGoogle Scholar
31Nowick, A. S., Wang, D. Y., Park, D. S., and Griffith, J., in Fast Ion Transport in Solids, edited by Vashista, P., Mundy, J. N., and Shenoy, G. K. (Elsevier North-Holland, Inc., New York, 1979), p. 673.Google Scholar
32Moghadam, F. K., Yamashita, T., and Stevenson, D. A., in Advances in Ceramics: Vol. 3, edited by Heuer, A. H. and Hobbs, L. W. (American Ceramics Society, Inc., Westerville, OH, 1981), p. 364.Google Scholar
33Pascual, C., Jurado, J. R., and Duran, P., J. Mater. Sci. 18, 1315 (1983).CrossRefGoogle Scholar
34Moztarzadah, F., Ceram. Int. 14, 27 (1988).CrossRefGoogle Scholar
35Subbarao, E. C. and Ramakrisnan, T. V., in Fast Ion Transport in Solids, edited by Vashista, P., Mundy, J. N., and Shenoy, G. K. (Elsevier North-Holland, Inc., New York, 1979), p. 653.Google Scholar
36Bonanos, N., Slotwinski, R. K., Steele, B. H., and Butler, E. P., J. Mater. Sci. Lett. 3, 245 (1984).CrossRefGoogle Scholar
37Kleitz, M., Bernard, H., Fernandez, E., and Schouler, E., in Advances in Ceramics: Vol. 3, edited by Heuer, A. H. and Hobbs, L. W. (American Ceramics Society, Inc., Westerville, OH, 1981), p. 310.Google Scholar
38Koops, C. G., Phys. Rev. 83, 121 (1951).CrossRefGoogle Scholar
39Bauerle, J. E., J. Phys. Chem. Solids 30, 2657 (1969).CrossRefGoogle Scholar
40Orliukas, A., Sasaki, K., Bohac, P., and Gauckler, L., in Proc. 2nd Int. Symp. Solid Oxide Fuel Cells, edited by Grosz, F., Zegers, P., Singhal, S. C., and Yamamoto, O. (Commission of European Communities Rep. EUR 13546 EN, Luxembourg, Belgium, 1991), p. 377.Google Scholar
41Casselton, R. E. W., Phys. Status Solidi A 2, 571 (1970).CrossRefGoogle Scholar
42Ananthapadmanabhan, P. V., Venkatramani, N., Rohagi, V. K., Momin, A. C., and Venkateswarlu, K. S., J. European Ceram. Soc. 6, 111 (1990).CrossRefGoogle Scholar
43Baumard, J. F., Papet, P., and Abelard, P., in Advances in Ceramics: Vol. 24, edited by Sōmiya, S., Yamamoto, N., and Yanagida, H. (American Ceramics Society, Inc., Westerville, OH, 1988), p. 779.Google Scholar
44Badwal, S. P. S. and Hughes, A. E., J. European Ceram. Soc. 10, 115 (1992).CrossRefGoogle Scholar
45Kleitz, M. and Kennedy, J. H., in Fast Ion Transport in Solids, edited by Vashista, P., Mundy, J. N., and Shenoy, G. K. (Elsevier North-Holland, Inc., New York, 1979), p. 185.Google Scholar
46Dessemond, L., Guindet, J., Hammou, A., and Kleitz, M., in Proc. 2nd Int. Symp. Solid Oxide Fuel Cells, edited by Grosz, F., Zegers, P., Singhal, S. C., and Yamamoto, O. (Commission of European Communities Rep. EUR 13546 EN, Luxembourg, Belgium, 1991), p. 409.Google Scholar
47Exner, H. E. and Hougardy, H. P., Einführung in die Quantitative Gefügeanalyse (DGM Informationsgessellschaft Verlag, 1986), p. 30.Google Scholar
48Underwood, E. E., Colcord, A. R., and Waugh, R. C., in Proc. 3rd Int. Mater. Symposium, edited by Fulrath, R. M. and Pask, J. A. (John Wiley and Sons, Inc., New York, 1968), p. 25.Google Scholar
49van Dijk, T. and Burggraaf, A. J., Phys. Status Solidi A 63, 229 (1981).CrossRefGoogle Scholar
50Steele, B. C. H., Drennan, J., Slotwinski, R. K., Bonanos, N., and Butler, E. P., in Advances in Ceramics: Vol. 3, edited by Heuer, A. H. and Hobbs, L. W. (American Ceramics Society, Inc., Westerville, OH, 1981), p. 286.Google Scholar
51Rajendran, S., Drennan, J., and Badwal, S. P. S., J. Mater. Sci. Lett. 6, 1431 (1987).CrossRefGoogle Scholar
52Bondar, I. A. and Galakhov, F. Y., Izv. Akad. Nauk. SSSR, Ser. Khim, 7, 1231 (1964).Google Scholar
53Levin, E. M., Robbins, C. R., and McMurdie, H. F., Phase Diagrams for Ceramists (Supplement, Am. Ceram. Soc, Inc., Westerville, OH, 1969), Fig. 2586.Google Scholar
54Hyatt, M. J. and Day, D. E., J. Am. Ceram. Soc. 70, C283 (1987).CrossRefGoogle Scholar
55Aldebert, P. and Traverse, J. P., J. Am. Ceram. Soc. 68, 34 (1985).CrossRefGoogle Scholar