Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T23:07:39.709Z Has data issue: false hasContentIssue false

Effect of gold underlayer on copper(I) oxide photocathode performance

Published online by Cambridge University Press:  18 April 2017

Tian Lan
Affiliation:
Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
Colton Mundt
Affiliation:
Department of Aerospace Engineering, Iowa State University, Ames, IA 50011, USA
Minh Tran
Affiliation:
Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
Sonal Padalkar*
Affiliation:
Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA; and Microelectronics Research Center, Iowa State University, Ames, IA 50011, USA
*
a)Address all correspondence to this author. e-mail: padalkar@iastate.edu
Get access

Abstract

Copper(I) oxide (Cu2O) is a very favorable p-type semiconductor. It is an appealing candidate for photoelectrochemical water splitting. Here we report the fabrication and performance of gold (Au) underlayer–Cu2O composite photocathode for photoelectrochemical water splitting. The composite photocathode was fabricated by the electrodeposition technique. The different morphologies of the Au underlayer were achieved via variation in the process parameters including applied potential, electrolyte pH, and the presence of L-cysteine in the electrolyte. The Cu2O overlayer was also deposited using electrodeposition. Additionally, the influence of morphology variation, of the Au underlayer, on the performance of the composite photocathode was evaluated. It was observed that the performance of the composite photocathode increased by 81% when compared to a control sample of Cu2O. The composite photocathodes were characterized by scanning electron microscopy, X-ray diffraction, and electrochemical impedance spectroscopy.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Xiaobo Chen

References

REFERENCES

Khaselev, O. and Turner, J.A.: A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280, 425427 (1998).Google Scholar
Aharon-Shalom, E. and Heller, A.: Efficient p-InP(Rh-H alloy) and p-InP(Re-H alloy) hydrogen evolving photocathodes. J. Electrochem. Soc. 129, 2 (1982).Google Scholar
Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., and Taga, Y.: Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269271 (2001).Google Scholar
Zou, Z., Ye, J., Sayama, K., and Arakawa, H.: Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 414, 625627 (2001).Google Scholar
Maeda, K., Takata, T., Hara, M., Saito, N., Inoue, Y., Kobayashi, H., and Domen, K.: GaN:ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting. J. Am. Chem. Soc. 127, 82868287 (2005).Google Scholar
Kay, A., Cesar, I., and Grätzel, M.: New benchmark for water photooxidation by nanostructured α-Fe2O3 films. J. Am. Chem. Soc. 128, 1571415721 (2006).Google Scholar
Boettcher, S.W., Warren, E.L., Putnam, M.C., Santori, E.A., Turner-Evans, D., Kelzenberg, M.D., Walter, M.G., Mckone, J.R., Brunschwig, B.S., Atwater, H.A., and Lewis, N.S.: Photoelectrochemical hydrogen evolution using Si microwire arrays. J. Am. Chem. Soc. 133, 12161219 (2011).CrossRefGoogle ScholarPubMed
Staszak-Jirkovsky, J., Malliakas, C.D., Lopes, P.P., Danilovic, N., Kota, S.S., Chang, K-C., Genorio, B., Strmcnik, D., Stamenkovic, V.R., Kanatzidis, M.G., and Markovic, N.M.: Design of active and stable Co–Mo–Sx chalcogels as pH-universal catalysts for the hydrogen evolution reaction. Nat. Mater. 15, 197203 (2016).Google Scholar
Ting, L.R.L., Deng, Y., Ma, L., Zhang, Y-J., Peterson, A.A., and Yeo, B.S.: Catalytic activities of sulfur atoms in amorphous molybdenum sulfide for the electrochemical hydrogen evolution reaction. ACS Catal. 6, 861867 (2016).Google Scholar
Fujishima, A. and Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972).Google Scholar
Li, X., Yu, J., Low, J., Fang, Y., Xiao, J., and Chen, X.: Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. A 3, 24852534 (2015).CrossRefGoogle Scholar
Yan, X., Tian, L., He, M., and Chen, X.: Three-dimensional crystalline/amorphous Co/Co3O4 core/shell nanosheets as efficient electrocatalysts for the hydrogen evolution reaction. Nano Lett. 15, 60156021 (2015).Google Scholar
Li, X., Yu, J., and Jaroniec, M.: Hierarchical photocatalysts. Chem. Soc. Rev. 45, 26032636 (2016).Google Scholar
Paracchino, A., Laporte, V., Sivula, K., Grätzel, M., and Thimsen, E.: Highly active oxide photocathode for photoelectrochemical water reduction. Nat. Mater. 10, 5 (2011).Google Scholar
De Jongh, P.E., Vanmaekelbergh, D., and Kelly, J.J.: Photoelectrochemistry of electrodeposited Cu2O. J. Electrochem. Soc. 147, 3 (2000).Google Scholar
Siripala, W., Ivanovskaya, A., Jaramillo, T.F., Baeck, S-H., and Mcfarland, E.W.: A Cu2O/TiO2 heterojunction thin film cathode for photoelectrocatalysis. Sol. Energy Mater. Sol. Cells 77, 229237 (2003).Google Scholar
Luo, J., Steier, L., Son, M-K., Schreier, M., Mayer, M.T., and Grätzel, M.: Cu2O nanowire photocathodes for efficient and durable solar water splitting. Nano Lett. 16, 18481857 (2016).CrossRefGoogle ScholarPubMed
Morales-Guio, C.G., Liardet, L., Mayer, M.T., David Tilley, S., Gratzel, M., and Hu, X.: Photoelectrochemical hydrogen production in alkaline solutions using Cu2O coated with earth-abundant hydrogen evolution catalysts. Angew. Chem., Int. Ed. 54, 3 (2015).Google Scholar
Hu, C-C., Nian, J-N., and Teng, H.: Electrodeposited p-type Cu2O as photocatalyst for H2 evolution from water reduction in the presence of WO3 . Sol. Energy Mater. Sol. Cells 92, 10711076 (2008).Google Scholar
Nian, J-N., Hu, C-C., and Teng, H.: Electrodeposited p-type Cu2O for H2 evolution from photoelectrolysis of water under visible light illumination. Int. J. Hydrogen Energy 33, 28972903 (2008).Google Scholar
Barreca, D., Fornasiero, P., Gasparotto, A., Gombac, V., Maccato, C., Montini, T., and Tondello, E.: The potential of supported Cu2O and CuO nanosystems in photocatalytic H2 production. ChemSusChem 2, 3 (2009).Google Scholar
Shi, W., Zhang, X., Li, S., Zhang, B., Wang, M., and Shen, Y.: Carbon coated Cu2O nanowires for photo-electrochemical water splitting with enhanced activity. Appl. Surf. Sci. 358, Part A, 404411 (2015).Google Scholar
Atwater, H.A. and Polman, A.: Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 865 (2010).CrossRefGoogle ScholarPubMed
Ou, Q.D., Li, Y.Q., and Tang, J.X.: Light manipulation in organic photovoltaics. Adv. Sci. 3, 1600123 (2016).Google Scholar
Tang, Z., Tress, W., and Inganas, O.: Light trapping in thin film organic solar cells. Mater. Today 17, 389396 (2014).CrossRefGoogle Scholar
Wang, Y., Plummer, E.W., and Kempa, K.: Foundations of plasmonics. Adv. Phys. 60, 799898 (2011).Google Scholar
Zhang, X.M., Chen, Y.L., Liu, R.S., and Tsai, D.P.: Plasmonic photocatalysis. Rep. Prog. Phys. 76, 046401 (2013).Google Scholar
Wang, G.M., Ling, Y.C., Wang, H.Y., Lu, X.H., and Li, Y.: Chemically modified nanostructures for photoelectrochemical water splitting. J. Photochem. Photobiol., C 19, 3551 (2014).Google Scholar
Zhang, P., Wang, T., and Gong, J.L.: Mechanistic understanding of the plasmonic enhancement for solar water splitting. Adv. Mater. 27, 53285342 (2015).Google Scholar
Zhang, Z., Zhang, L., Hedhili, M.N., Zhang, H., and Wang, P.: Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting. Nano Lett. 13, 1420 (2013).Google Scholar
Primo, A., Marino, T., Corma, A., Molinari, R., and García, H.: Efficient visible-light photocatalytic water splitting by minute amounts of gold supported on nanoparticulate CeO2 obtained by a biopolymer templating method. J. Am. Chem. Soc. 133, 69306933 (2011).CrossRefGoogle ScholarPubMed
Gao, H., Liu, C., Jeong, H.E., and Yang, P.: Plasmon-enhanced photocatalytic activity of iron oxide on gold nanopillars. ACS Nano 6, 234240 (2012).Google Scholar
Sakai, Y.F.N., Arai, M., Yu, K., and Tatsuma, T.: Electrodeposition of gold nanoparticles on ITO: Control of morphology and plasmon resonance-based absorption and scattering. J. Electroanal. Chem. 628, 715 (2009).Google Scholar
Wang, S., Qian, K., Bi, X., and Huang, W.: Influence of speciation of aqueous HAuCl4 on the synthesis, structure, and property of Au colloids. J. Phys. Chem. C 113, 65056510 (2009).Google Scholar
Yannopoulos, J.C.: The Extractive Metallurgy of Gold (Van Nostrand Reinhold, New York, 1991).Google Scholar
Depestel, L.M. and Strubbe, K.: Electrodeposition of gold from cyanide solutions on different n-GaAs crystal faces. J. Electroanal. Chem. 572, 195201 (2004).CrossRefGoogle Scholar
Dolati, A., Imanieh, I., Salehi, F., and Farahani, M.: The effect of cysteine on electrodeposition of gold nanoparticle. Mater. Sci. Eng., B 176, 13071312 (2011).Google Scholar
Feng, J-J., Li, A-Q., Lei, Z., and Wang, A-J.: Low-potential synthesis of “clean” Au nanodendrites and their high performance toward ethanol oxidation. ACS Appl. Mater. Interfaces 4, 25702576 (2012).Google Scholar
Ye, W., Yan, J., Ye, Q., and Zhou, F.: Template-free and direct electrochemical deposition of hierarchical dendritic gold microstructures: Growth and their multiple applications. J. Phys. Chem. C 114, 1561715624 (2010).Google Scholar
Lin, T-H., Lin, C-W., Liu, H-H., Sheu, J-T., and Hung, W-H.: Potential-controlled electrodeposition of gold dendrites in the presence of cysteine. Chem. Commun. 47, 20442046 (2011).Google Scholar
Supplementary material: File

Lan supplementary material

Figures S1-S6

Download Lan supplementary material(File)
File 418 KB