Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T23:08:56.022Z Has data issue: false hasContentIssue false

Effect of chromium on properties of Fe3Al

Published online by Cambridge University Press:  31 January 2011

C. G. McKamey
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6115
J. A. Horton
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6115
C. T. Liu
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6115
Get access

Abstract

The effects of the addition of chromium on several properties of Fe3Al, including tensile strength and ductility, fracture behavior, and slip and dislocation characteristics, were studied. Alloying with up to 6 at. % chromium results in an increase in room temperature ductility from approximately 4% to 8–10%. Along with this increase in ductility, the addition of chromium produces a change in fracture mode from transgranular cleavage to a mixed mode of intergranular-transgranular cleavage, and a change in slip behavior from coarse straight slip to fine wavy slip. These phenomena are discussed in terms of the effect of chromium on the antiphase boundary energies and dislocation characteristics.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Schulson, E.M., Res. Mechanica Lett. 1, 111 (1981).Google Scholar
2Horton, J. A., Liu, C. T., and Koch, C. C., Proceedings of High Temperature Alloys: Theory and Design, Bethesda, MD, April 811, 1984, edited by J.O. Stiegler (TMS-AIME, 1984), pp. 309-321.Google Scholar
3Ken, W.R., Metall. Trans. A 17A, 2298 (1986).Google Scholar
4Mendiratta, M.G., Ehlers, S.K., Chatterjee, D.K., and Lipsitt, H.A., Metall. Trans. A 18A, 283 (1987).CrossRefGoogle Scholar
5Bordeau, R. G., AFWAL-TR-87-4009, Development of Iron Aluminides, Air Force Wright Aeronautical Laboratories, Wright-Patterson Air Force Base, OH, May 1987.Google Scholar
6Mendiratta, M.G., Ehlers, S.K., Dimiduk, D. M., Kerr, W. R., Mazdiyasni, S., and Lipsitt, H. A., in Materials Research Society Symposia Proceedings, High-Temperature Ordered Intermetallic Alloys, II, edited by Koch, C.C., Liu, C.T., Stoloff, N.S., and Izumi, O. (Materials Research Society, Pittsburgh, PA, 1987), Vol. 81, pp. 393404.Google Scholar
7Diehm, R.S. and Mikkola, D.E., in Materials Research Society Symposia Proceedings, High-Temperature Ordered Intermetallic Alloys, II, edited by Koch, C. C., Liu, C. T., Stoloff, N. S., and Izumi, O. (Materials Research Society, Pittsburgh, PA, 1987), Vol. 81, pp. 329334.Google Scholar
8Culbertson, G. and Kortovich, C.S., Development of Iron Aluminides, AFWAL-TR-4155, Air Force Wright Aeronautical Laboratories, Wright-Patterson Air Force Base, OH, March 1986.Google Scholar
9Mendiratta, M. G. and Lipsitt, H. A., in Materials Research Society Symposia Proceedings, High-Temperature Ordered Intermetallic Alloys, edited by Koch, C. C., Liu, C. T., and Stoloff, N. S. (Materials Research Society, Pittsburgh, PA, 1985), Vol. 39, pp. 155162.Google Scholar
10Diehm, R. S., Kemppainen, M. P., and Mikkola, D. E., Adv. Mater. Man. Proc. (to be published).Google Scholar
11McKamey, C. G., Horton, J. A., and Liu, C. T., Scripta Metall. 22, 1679 (1988).CrossRefGoogle Scholar
12McKamey, C. G., Liu, C. T., Cathcart, J. V., David, S. A., and Lee, E. H., Evaluation of Mechanical and Metallurgical Properties of Fe3Al-Based Aluminides, ORNL/TM-10125, September 1986.CrossRefGoogle Scholar
13McKamey, C.G., Liu, C.T., David, S.A., Horton, J.A., Pierce, D.H., and Campbell, J. J., Development of Iron Aluminides for Gasification Systems, ORNL/TM-10793, April 1988.Google Scholar
14Marcinkowski, M. J. and Brown, N., J. Appl. Phys. 33 (2), 537 (1962).CrossRefGoogle Scholar
15Stoloff, N. S. and Davies, R. G., Acta Metall. 12, 473 (1964).CrossRefGoogle Scholar
16McKamey, C. G. and Horton, J. A., Metall. Trans. A 20A, 751 (1989).CrossRefGoogle Scholar
17Veyssiere, P., Horton, J.A., Yoo, M. H., and Liu, C.T., Philos. Mag. Lett. 56, 17 (1987).Google Scholar
18Crawford, R. C. and Ray, I. L. F., Philos. Mag. 35, 549 (1977).CrossRefGoogle Scholar
19Marcinkowski, M. J. and Brown, N., Acta Metall. 9, 764 (1961).CrossRefGoogle Scholar
20Stoloff, N. S. and Davies, R. G., in Progress in Materials Science, edited by Chalmers, Bruce and Hume-Rothery, W. (Pergamon Press, Oxford, 1966), Vol. 13, pp. 184.Google Scholar
21Leamy, H. J. and Kayser, EX., Phys. Status Solidi 34, 765 (1969).CrossRefGoogle Scholar
22Saburi, T., Yamauchi, I., and Nenno, S., J. Phys. Soc. Japan 32 (3), 694 (1972).CrossRefGoogle Scholar
23Marcinkowski, M. J. and Chessin, H., Philos. Mag. 10, 837 (1964).CrossRefGoogle Scholar
24Johnston, T.L., Davies, R.G., and Stoloff, N.S., Philos. Mag. 12, 305 (1965).CrossRefGoogle Scholar