Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T15:16:20.820Z Has data issue: false hasContentIssue false

The effect of arc parameters on the growth of carbon nanotubes

Published online by Cambridge University Press:  31 January 2011

J. M. Lauerhaas
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208
J. Y. Dai
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208
A. A. Setlur
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208
R. P. H. Chang
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208
Get access

Abstract

The influence of starting carbon material on the generation of carbon nanotubes is investigated. Comparisons are made between oriented graphite, randomly oriented graphite, carbon black, and a polycyclic aromatic hydrocarbon as carbon sources in helium and hydrogen arcs. Transmission electron microscopy investigation of the redeposited rod formed on the cathode and the soot from the chamber walls provides evidence for the building blocks that lead to the nanostructures formed. It is postulated that polycyclic aromatic hydrocarbons are precursors for carbon nanotube growth in a hydrogen arc. While, in the case of helium, low molecular weight carbon ions and molecules have been previously hypothesized by others to be the building blocks for nanotube growth.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kratschmer, W., Lamb, L. D., Fostiropoulos, K., and Huffman, D. R., Nature (London) 347, 354 (1990).CrossRefGoogle Scholar
2.Ebbesen, T. W. and Ajayan, P. M., Nature (London) 358, 220 (1992).CrossRefGoogle Scholar
3.Dujardin, E., Ebbesen, T. W., Hiura, H., and Tanigaki, K., Science 265, 1850 (1994).CrossRefGoogle Scholar
4.Ajayan, P. M., Stephan, O., Colliex, C., and Trauth, D., Science 265, 1212 (1994).CrossRefGoogle Scholar
5.Tsang, S. C., Chen, Y. K., Harris, P. J. F., and Green, M. L. H., Nature (London) 372, 159 (1994).Google Scholar
6.Eklund, P. C., Holden, J. M., and Jishi, R. A., Carbon 33, 959 (1995).CrossRefGoogle Scholar
7.Zhou, D., Tan, H., Gan, L., Luo, C., Huang, C., Yao, G., and Zhang, P., Chem. Lett. 8, 649 (1995).CrossRefGoogle Scholar
8.Treacy, M. M., Ebbesen, T. W., and Gibson, J. M., Nature (London) 381, 678 (1996).CrossRefGoogle Scholar
9.Banhart, F. and Ajayan, P. M., Nature (London) 382, 433 (1996).Google Scholar
10.Ebbesen, T. W., Tabuchi, J., and Tanigaki, K., Chem. Phys. Lett. 191, 336 (1992).CrossRefGoogle Scholar
11.Brabec, C. J., Maiti, A., Roland, C., and Bernholc, J., Chem. Phys. Lett. 236, 150 (1995).Google Scholar
12.Seraphin, S., Zhou, D., Jiao, J., Withers, J. C., and Loutfy, R., Carbon 31, 685 (1993).CrossRefGoogle Scholar
13.Colbert, D. T., Zhang, J., McClure, S. M., Nikolaev, P., Chen, Z., Hafner, J. H., Owens, D. W., Kotula, P. G., Carter, C. B., Weaver, J. H., Rinzler, A. G., and Smalley, R. E., Science 266, 1218 (1994).CrossRefGoogle Scholar
14.Saito, Y., Yoshikawa, T., Inagaki, M., Tomita, M., and Hayashi, M., Chem. Phys. Lett. 204, 277 (1993).CrossRefGoogle Scholar
15.Iijima, S., Ajayan, P. M., and Ichihashi, T., Phys. Rev. Lett. 69, 3100 (1992).CrossRefGoogle Scholar
16.Iijima, S., Mater. Sci. Eng. B19, 172 (1993).CrossRefGoogle Scholar
17.Ajayan, P. M. and Iijima, S., Nature (London) 361, 333 (1993).CrossRefGoogle Scholar
18.Ajayan, P. M., Ebbesen, T. W., Ichihashi, T., Iijima, S., Tanigaki, K., and Hiura, H., Nature (London) 362, 522 (1993).CrossRefGoogle Scholar
19.Ruoff, R. S., Nature (London) 372, 731 (1994).Google Scholar
20.Ajayan, P. M., Stephan, O., Redlich, P., and Colliex, C., Nature (London) 375, 564 (1995).Google Scholar
21.Loiseau, A. and Pascard, H., Chem. Phys. Lett. 256, 246 (1996).CrossRefGoogle Scholar
22.Ruoff, R. S., Lorents, D. C., Chan, B., Malhotra, R., and Subramoney, S., Science 259, 346 (1993).Google Scholar
23.Harris, P. J. F., Tsang, S. C., Claridge, J. B., and Green, M. L. H., J. Chem. Soc. Faraday Trans. 90, 2799 (1994).CrossRefGoogle Scholar
24.de Heer, W. A., Chatelain, A., and Ugarte, D., Science 270, 1179 (1995).CrossRefGoogle Scholar
25.Song, S. N., Wang, X. K., Chang, R. P. H., and Ketterson, J. B., Phys. Rev. Lett. 72, 697 (1994).CrossRefGoogle Scholar
26.Ebbesen, T. W., Lezec, H. J., Hiura, H., Bennett, J. W., Ghaemi, H. F., and Thio, T., Nature (London) 382, 54 (1996).CrossRefGoogle Scholar
27.Hayashi, T., Hirono, S., Tomita, M., and Umemura, S., Nature (London) 381, 772 (1996).Google Scholar
28.Wang, X. K., Lin, X. W., Meslah, M., Jarrold, M. F., Dravid, V. P., Ketterson, J. B., and Chang, R. P. H., J. Mater. Res. 10, 1977 (1995).CrossRefGoogle Scholar
29.Setlur, A. A., Lauerhaas, J. M., Dai, J. Y., and Chang, R. P. H., Appl. Phys. Lett. 69, 345 (1996).CrossRefGoogle Scholar
30.Dai, J. Y., Lauerhaas, J. M., Setlur, A. A., and Chang, R. P. H., Chem. Phys. Lett. 258, 547 (1996).Google Scholar
31.Ong, T. P., Xiong, F., Chang, R. P. H., and White, C. W., J. Mater. Res. 7, 2429 (1992).CrossRefGoogle Scholar
32.Wang, X. K., Lin, X. W., Dravid, V. P., Ketterson, J. B., and Chang, R. P. H., Appl. Phys. Lett. 66, 2430 (1995).CrossRefGoogle Scholar
33.Wang, X. K., Lin, X. W., Dravid, V. P., Ketterson, J. B., and Chang, R. P. H., Appl. Phys. Lett. 66, 427 (1995).CrossRefGoogle Scholar
34.Wang, X. K., Lin, X. W., Dravid, V. P., Ketterson, J. B., and Chang, R. P. H., Appl. Phys. Lett. 62, 1881 (1993).Google Scholar
35.Maiti, A., Brabec, C. J., Roland, C. M., and Bernholc, J., Phys. Rev. Lett. 73, 2468 (1994).CrossRefGoogle Scholar
36.Kroto, H. W. and McKay, K., Nature (London) 331, 328 (1988).Google Scholar
37.Endo, M. and Kroto, H. W., J. Phys. Chem. 96, 6941 (1992).CrossRefGoogle Scholar
38.Robertson, D. H., Brenner, D. W., and White, C. T., J. Phys. Chem. 96, 6133 (1992).Google Scholar
39.Strout, D. L. and Scuseria, G. E., J. Phys. Chem. 100, 6492 (1996).Google Scholar
40.von Engel, A., Ionized Gases, 2nd ed. (Oxford Univ. Press, London, England, 1965), pp. 8689.Google Scholar
41.Ebbesen, T. W. et al., Chem. Phys. Lett. 209, 83 (1993).CrossRefGoogle Scholar
42.Gamaly, E. G. and Ebbesen, T. W., Phys. Rev. B 52, 2080 (1995).CrossRefGoogle Scholar
43.Granqvist, C. G. and Buhrman, R. A., J. Appl. Phys. 47, 2200 (1976).CrossRefGoogle Scholar