Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T17:54:31.823Z Has data issue: false hasContentIssue false

Effect of alloy substituents on soft magnetic properties and economics of Fe-based and Co-based alloys

Published online by Cambridge University Press:  15 July 2015

Michael Kurniawan*
Affiliation:
Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15217, USA
Vladimir Keylin
Affiliation:
Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15217, USA
Michael Edward McHenry
Affiliation:
Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15217, USA
*
a)Address all correspondence to this author. e-mail: mkurniaw@andrew.cmu.edu
Get access

Abstract

Amorphous and nanocrystalline soft magnetic alloys have garnered interests in academia and industry due to their potentials for applications, such as power transformers, electric motors, and sensors. To achieve good glass formability, thermal stability, and prevent grain overgrowth, elements such as B, Nb, Ta, and Hf are used in many soft magnetic systems. However, the high price of these precursors results in expensive soft magnetic alloys. Herein, we report on substituting Ta and Hf with TaC and HfC, respectively, to significantly reduce the cost of Fe-based FINEMET and Co-based HTX005 alloys. Soft magnetic properties of these alloys are studied. The effect of thermal annealing and strain annealing on TaC and HfC substituted alloys are also investigated. Lastly, we discuss the cost analysis on these alloys. Using the synthesis route presented here, a cost reduction of up to 74% can be achieved.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

McHenry, M.E., Willard, M.A., and Laughlin, D.E.: Amorphous and nanocrystalline materials for applications as soft magnets. Prog. Mater. Sci. 44, 291 (1999).CrossRefGoogle Scholar
Leary, A.M., Ohodnicki, P.R., and McHenry, M.E.: Soft magnetic materials in high-frequency, high-power conversion applications. JOM 64(7), 772 (2012).CrossRefGoogle Scholar
Willard, M.A. and Daniil, M.: Chapter Four—Nanocrystalline soft magnetic alloys two decades of progress. Handb. Magn. Mater. 21, 173 (2013).CrossRefGoogle Scholar
Coey, J.M.D.: Magnetic materials. J. Alloys Compd. 326(1), 2 (2001).CrossRefGoogle Scholar
Buschow, K.H.J.: Handbook of Magnetic Materials, Vol. 15 (Elsevier, Amsterdam, Netherlands, 2003).Google Scholar
Khan, M.A., Chen, Y., and Pillay, P.: Application of soft magnetic composites to PM wind generator design. IEEE Power Eng. Soc. Gen. Meet. (2006).Google Scholar
Emsley, J.: Nature's Building Blocks: An A-Z Guide to the Elements (Oxford University Press, Oxford, UK, 2003); p. 421.Google Scholar
McHenry, M.E., Johnson, F., Okumura, H., Ohkubo, T., Hsiao, A., Ramanan, V.R.V., and Laughlin, D.E.: The kinetics of nanocrystallization and microstructural observations in FINEMET, NANOPERM and HITPERM nanocomposite magnetic materials. Scr. Mater. 48, 881 (2003).CrossRefGoogle Scholar
Iwanabe, H., McHenry, M.E., Lu, B., and Laughlin, D.E.: Thermal stability of the nanocrystalline Fe-Co-Hf-B-Cu alloy. J. Appl. Phys. 85(8), 4424 (1999).CrossRefGoogle Scholar
McHenry, M.E., Willard, M.A., Iwanabe, H., Sutton, R.A., Turgut, Z., Hsiao, A., and Laughlin, D.E.: Nanocrystalline materials for high temperature soft magnetic applications: A current prospectus. Bull. Mater. Sci. 22, 495 (1999).CrossRefGoogle Scholar
Lucas, M.S., Bourne, W.C., Sheets, A.O., Brunke, L., Alexander, M.D., Shank, J.M., Michel, E., Semiatin, S.L., Horwath, J., and Turgut, Z.: Nanocrystalline Hf and Ta containing FeCo based alloys for high frequency applications. Mater. Sci. Eng., B 176, 1079 (2011).CrossRefGoogle Scholar
McHenry, M.E. and Laughlin, D.E.: Nano-scale materials development for future magnetic applications. Acta Mater. 48(1), 223 (2000).CrossRefGoogle Scholar
Kopcewicz, M., Grabias, A., Latuch, J., and Kowalczyk, M.: Soft magnetic amorphous Fe–Zr– Si(Cu) boron-free alloys. Mater. Chem. Phys. 126(3), 669 (2011).CrossRefGoogle Scholar
Liu, C.T. and Lu, Z.P.: Effect of minor alloying additions on glass formation in bulk metallic glasses. Intermetallics 13, 415 (2005).CrossRefGoogle Scholar
Kopcewicz, M., Grabias, A., and Latuch, J.: Magnetic properties of Fe80−xCoxZr7Si13 (x=0–30) amorphous alloys. J. Appl. Phys. 110, 103907 (2011).CrossRefGoogle Scholar
Long, J., Laughlin, D.E., and McHenry, M.E.: Structural and soft magnetic properties of a new nanocrystalline Fe-based and B-free alloy. J. Appl. Phys. 103, 07E708 (2008).CrossRefGoogle Scholar
Okumura, H., Laughlin, D.E., and McHenry, M.E.: Magnetic and structural properties and crystallization behavior of Si-rich FINEMET materials. J. Magn. Magn. Mater. 267, 347 (2003).CrossRefGoogle Scholar
Zabransky, K. and Jiraskova, Y.: Physical and chemical properties of FINEMET-type amorphous alloys. Acta Phys. Pol., A 113(1), 123 (2008).CrossRefGoogle Scholar
Ramanan, V.R.V. and Fish, G.E.: Crystallization kinetics in Fe−B−Si metallic glasses. J. Appl. Phys. 53, 2273 (1982).CrossRefGoogle Scholar
Donald, I.W. and Davies, H.A.: The influence of transition metal substitutions on the formation, stability and hardness of some Fe- and Ni-based metallic glasses. Philos. Mag. A 42(3), 277 (1980).CrossRefGoogle Scholar
Kurniawan, M., Keylin, V., and McHenry, M.E.: Alloy substituents for cost reduction in soft magnetic materials. J. Mater. Res. 30(8), 10721077 (2015).CrossRefGoogle Scholar
Chen, S.L., Liu, W., Geng, D.Y., Zhao, X.G., and Zhang, Z.D.: Decomposition of B4C and magnetic properties of Nd–Fe–(B, C) alloys synthesized by mechanical alloying. J. Alloys Compd. 415, 271 (2006).CrossRefGoogle Scholar
Sui, Y.C., Zhang, Z.D., Xiao, Q.F., Liu, W., Zhao, X.G., Zhao, T., and Chuang, Y.C.: Nd - Fe - (C, B) permanent magnets made by mechanical alloying and subsequent annealing. J. Phys.: Condens. Matter 8, 11231 (1996).Google Scholar
Sui, Y.C., Zhang, Z.D., Xiao, Q.F., Liu, W., Zhao, T., Zhao, X.G., and Chuang, Y.C.: Structure, phase transformation and magnetic properties of Nd–Fe–C alloys made by mechanical alloying and subsequent annealing. J. Alloys Compd. 267, 215 (1998).CrossRefGoogle Scholar
Kou, X.C., Sun, X.K., Chuang, Y.C., Grossinger, R., and Kirchmayr, H.R.: Structure and magnetic properties of R2Fe14B1−xCx compounds (R = Y, Nd). J. Magn. Magn. Mater. 80, 31 (1989).CrossRefGoogle Scholar
Um, C.Y. and McHenry, M.E.: Magnetic properties of Co-substituted Fe-Nb-Ta-Mo-B amorphous alloys. IEEE Trans. Magn. 40(4), 2724 (2004).CrossRefGoogle Scholar
Kear, B.H., Giessen, B.C., and Cohen, M.: Rapidly Solidified Amorphous and Crystalline Alloys. (Cambridge University Press, New York, NY, 1982).CrossRefGoogle Scholar
Davies, H.A., Steed, S., and Warlimont, H.: Rapidly Quenched Metals, Vol. 1 (Elsevier, Amsterdam, Netherlands, 1985).Google Scholar
Fish, G.E.: Research and development opportunities for rapidly solidified soft magnetic materials. Mater. Sci. Eng., B 3(4), 457 (1989).CrossRefGoogle Scholar
Um, C.Y., Johnson, F., Simone, M., Barrow, J., and McHenry, M.E.: Effect of crystal fraction on hardness in FINEMET and NANOPERM nanocomposite alloys. J. Appl. Phys. 97, 10F504 (2005).CrossRefGoogle Scholar
Hsiao, A., McHenry, M.E., Tamoria, M., and Harris, V.G.: Magnetic properties and crystallization kinetics of a Mn-doped FINEMET precursor amorphous alloy. IEEE Trans. Magn. 37, 2236 (2001).CrossRefGoogle Scholar
Butvinova, B., Butvin, P., Illekova, E., Svec, P., Vlasak, G., Janickovic, D., and Kadlecikova, M.: Impact of phosphorus for boron substitution on magnetic properties of magnetostrictive FINEMETS. Acta Electron. 13, 78 (2013).Google Scholar
Varga, L.K., Bakos, E., Kisdi-Koszd, E., Zsoldos, E., and Kiss, L.F.: Time and temperature dependence of nanocrystalline structure formation in a Finemet-type amorphous alloy. J. Magn. Magn. Mater. 133, 280 (1994).CrossRefGoogle Scholar
Gam, D.T.H., The, N.D., Hai, N.H., Chau, N., Hoa, N.Q., and Mahmud, Md.S.: Investigation of the nanocrystallization process and the magnetic properties of Finemet-like Fe73.5Si17.5B5Nb3Cu1 ribbons. J. Korean Phys. Soc. 52(5), 1423 (2008).CrossRefGoogle Scholar
Talaat, A., Ipatov, M., Zhukova, V., Blanco, J.M., Churyukanova, M., Kaloshkin, S., and Zhukov, A.: Giant magneto-impedance effect in thin Finemet nanocrystalline microwires. Phys. Status Solidi C 11(5), 1120 (2014).CrossRefGoogle Scholar
Yoshizawa, Y. and Yamauchi, K.: Effects of magnetic field annealing on magnetic properties in ultrafine crystalline Fe-Cu-Nb-Si-B alloys. IEEE Trans. Magn. 25(5), 3324 (1989).CrossRefGoogle Scholar
Nakajimaa, S., Arakawaa, S., Yamashitab, Y., and Shiho, M.: Fe-based nanocrystalline FINEMET cores for induction accelerators. Nucl. Instrum. Methods Phys. Res., Sect. A 331(1), 318 (1993).CrossRefGoogle Scholar
Yoshizawa, Y. and Yamauchi, K.: Fe-based soft magnetic alloys composed of ultrafine grain structure. Mater. Trans., JIM 31(4), 307 (1990).CrossRefGoogle Scholar
Rhen, F.M.F. and Roy, S.: Electrodeposited CoNiFeP soft-magnetic films for high frequency applications. IEEE Trans. Magn. 44(11), 3917 (2008).CrossRefGoogle Scholar
Leary, A.M., Ohodnicki, P.R., Mchenry, M.E., Keylin, V., Huth, J., and Kernion, S.J.: Tunable anisotropy of Co-based nanocomposites for magnetic field sensing and inductor applications. US Patent 20140338793, 2014.Google Scholar
Silveyra, J.M., Leary, A.M., DeGeorge, V., Simizu, S., and McHenry, M.E.: High-speed electric motors based on high performance novel soft magnets. J. Appl. Phys. 115, 17A319 (2014).CrossRefGoogle Scholar
Ohodnicki, P.R., Qina, Y.L., McHenry, M.E., Laughlin, D.E., and Keylin, V.: Transmission electron microscopy study of large field induced anisotropy (Co1−xFex)89Zr7B4 nanocomposite ribbons with dilute Fe-contents. J. Magn. Magn. Mater. 322(3), 315 (2010).CrossRefGoogle Scholar
Ohodnicki, P.R., Long, J., Laughlin, D.E., McHenry, M.E., Keylin, V., and Huth, J.: Composition dependence of field induced anisotropy in ferromagnetic (Co,Fe)89Zr7B4 and (Co,Fe)88Zr7B4Cu1 amorphous and nanocrystalline ribbons. J. Appl. Phys. 104, 113909 (2008).CrossRefGoogle Scholar
Chaturvedi, A., Laurita, N., Leary, A., Phan, M.H., McHenry, M.E., and Srikanth, H.: Giant magnetoimpedance and field sensitivity in amorphous and nanocrystalline (Co1−xFex)89Zr7B4 (x = 0, 0.025, 0.05, 0.1) ribbons. J. Appl. Phys. 109, 07B508 (2011).CrossRefGoogle Scholar
Kernion, S.J., Ohodnicki, P.R., Grossmann, J., Leary, A., Shen, S., Keylin, V., Huth, J.F., Horwath, J., Lucas, M.S., and McHenry, M.E.: Giant induced magnetic anisotropy in strain annealed Co-based nanocomposite alloys. Appl. Phys. Lett. 101, 102408 (2012).CrossRefGoogle Scholar
Iturriza, N., Nazmunnahar, M., Dominguez, L., González, J., and del Val, J.J.: Effect of the current annealing (without and with tensile stress) on the soft magnetic behaviour of Fe73.5-x(Co0.5Ni0.5)xSi13.5B9Nb3Cu1 alloy ribbons (x = 2.5, 5 and 10). J. Nanosci. Nanotechnol. 12(6), 5071 (2012).CrossRefGoogle ScholarPubMed
Kanada, T., Kido, Y., Kutsukake, A., Ikeda, T., and Enokizono, M.: Magnetic properties of soft magnetic materials under tensile and compressive stress. Przegl. Elektrotech. (Electr. Rev.) 87(9b), 93 (2011).Google Scholar
Benchabi, A., Alves, F., Barrué, R., Faugières, J.C., and Rialland, J.F.: Magnetic properties and domain structures in stress-annealed FeZrB-(Cu)-(Nb) nanocrystalline ribbons. Eur. Phys. J. Appl. Phys. 15, 173 (2001).CrossRefGoogle Scholar
Turgut, Z., Huang, M.Q., Horwath, J.C., Hinde, R., Kubicki, J., and Fingers, R.T.: Effect of tensile stress and texture on magnetic properties of FeCo laminates. IEEE Trans. Magn. 40(4), 2742 (2004).CrossRefGoogle Scholar
Herzer, G., Budinsky, V., and Polak, C.: Magnetic properties of FeCuNbSiB nanocrystallized by flash annealing under high tensile stress. Phys. Status Solidi B 248(10), 2382 (2011).CrossRefGoogle Scholar
Kurniawan, M., Roy, R.K., Panda, A.K., Greve, D.W., Ohodnicki, P., and McHenry, M.E.: Temperature-dependent giant magnetoimpedance effect in amorphous soft magnets. J. Electron. Mater. 43(12), 4576 (2014).CrossRefGoogle Scholar
Kurniawan, M., Roy, R.K., Panda, A.K., Greve, D.W., Ohodnicki, P.R. Jr., and McHenry, M.E.: Interplay of stress, temperature, and giant magnetoimpedance in amorphous soft magnets. Appl. Phys. Lett. 105, 222407 (2014).CrossRefGoogle Scholar
Arribas, A.G., Gutiérrez, J., Kurlyandskaya, G.V., Barandiarán, J.M., Svalov, A., Fernández, E., Lasheras, A., de Cos, D., and Imaz, I.B.: Sensor applications of soft magnetic materials based on magneto-impedance, magneto-elastic resonance and magneto-electricity. Sensors 14, 7602 (2014).CrossRefGoogle Scholar
Slusarek, B. and Zakrzewski, K.: Magnetic properties of permanent magnets for magnetic sensors working in wide range of temperature. Przegl. Elektrotech. (Electr. Rev.) 88 (7b), 123 (2012).Google Scholar
Wieser, M.E., Holden, N., Coplen, T.B., Bohlke, J.K., Berglund, M., Brand, W.A., De Bievre, P., Groning, M., Loss, R.D., Meija, J., Hirata, T., Prohaska, T., Schoenberg, R., O’Connor, G., Walczyk, T., Yoneda, S., and Zhu, X.K.: Atomic weights of the elements (IUPAC technical report). Pure Appl. Chem. (IUPAC) 85(5), 1047 (2011).CrossRefGoogle Scholar
Emeléus, H.J.: Advances in Inorganic Chemistry and Radiochemistry, Vol. 11 (1968); p. 169.Google Scholar
Guicciardi, S., Silvestroni, L., Pezzotti, G., and Sciti, D.: Depth-sensing indentation hardness characterization of HfC-based composites. Adv. Eng. Mater. 9(5), 389 (2007).CrossRefGoogle Scholar
Domnich, V., Reynaud, S., Haber, R.A., and Chowalla, M.: Boron carbide: Structure, properties, and stability under stress. J. Am. Ceram. Soc. 94(11), 3605 (2011).CrossRefGoogle Scholar
Thevenot, F.: A review on boron carbide. Key Eng. Mater. 56, 59 (1991).CrossRefGoogle Scholar
Niihara, K., Nakahira, A., and Hirai, T.: The effect of stoichiometry on mechanical properties of boron carbide. J. Am. Ceram. Soc. 67(1), C13 (1984).CrossRefGoogle Scholar