Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T23:39:05.508Z Has data issue: false hasContentIssue false

Effect of a fourth alloying element on the microstructure and mechanical properties of Cu–Al–Ni shape memory alloys

Published online by Cambridge University Press:  27 July 2015

Safaa N. Saud
Affiliation:
Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Johor 81310, Malaysia
Esah Hamzah*
Affiliation:
Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Johor 81310, Malaysia
Tuty Abubakar
Affiliation:
Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Johor 81310, Malaysia
Mustafa K. Ibrahim
Affiliation:
Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Johor 81310, Malaysia
Abdollah Bahador
Affiliation:
Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Johor 81310, Malaysia
*
a)Address all correspondence to this author. e-mail: esah@fkm.utm.my
Get access

Abstract

The present investigation aims to enhance the mechanical properties and shape memory characteristics of Cu–Ni–Al shape memory alloys (SMAs) by alloying additional elements. These additions were found to control the phase morphology and grain size, along with the formation of different volume fractions, sizes, and distributions of precipitates. The features of the precipitates were mainly dependent on the type of alloying element. It was found that a Co (1.14 wt%) alloy gave the best overall improvement in terms of the transformation temperatures, ductility, and shape memory recovery. These improvements were mainly due to the exceptionally high presence of the γ2 phase in the microstructures of the modified alloy. The results of the current investigation were analyzed and compared to those of previous studies related to Cu–Al–Ni SMAs.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Gandhi, V. and Thompson, B.S.: Smart Materials and Structures (Springer, London, 1992).Google Scholar
Otsuka, K. and Wayman, C.M.: Shape Memory Materials (Cambridge University Press, Cambridge, 1999). Reprint, illustrated ed. Google Scholar
Olson, G. and Cohen, M.: Stress-assisted isothermal martensitic transformation: Application to TRIP steels. Metall. Trans. A 13(11), 1907 (1982).Google Scholar
Fremond, M. and Miyazaki, S.: Shape Memory Alloys (Springer-Verlag, New York, 1996).CrossRefGoogle Scholar
Kumar, P. and Lagoudas, D.: Introduction to Shape Memory Alloys (Springer, Texas, 2008).Google Scholar
Nishiyama, Z., Fine, M.E., and Wayman, C.M.: Martensitic Transformation (Academic Press, New York, 1978).Google Scholar
Davis, J.R.: Copper and Copper Alloys (ASM International, New York, 2001).Google Scholar
Porter, D.A., Easterling, K.E., and Sherif, M.: Phase Transformations in Metals and Alloys (CRC press, Boca Raton, FL, 2011). (Revised reprint).Google Scholar
Otsuka, K. and Ren, X.: Physical metallurgy of Ti–Ni-based shape memory alloys. Prog. Mater. Sci. 50(5), 511 (2005).Google Scholar
Lagoudas, D.C.: Shape Memory Alloys: Modeling and Engineering Applications (Springer, New York, 2008).Google Scholar
San Juan, J., , M., and Schuh, C.: Superelastic cycling of Cu–Al–Ni shape memory alloy micropillars. Acta Mater. 60(10), 4093 (2012).CrossRefGoogle Scholar
Saud, S., Hamzah, E., Abubakar, T., and Bakhsheshi-Rad, H.R.: Thermal aging behavior in Cu–Al–Ni–xCo shape memory alloys. J. Therm. Anal. Calorim. 119(2), 1273 (2015).Google Scholar
Saud, S., Hamzah, E., Abubakar, T., Bakhsheshi-Rad, H.R., Zamri, M., and Tanemura, M.: Effects of Mn additions on the structure, mechanical properties, and corrosion behavior of Cu–Al–Ni shape memory alloys. J. Mater. Eng. Perform. 10, 36203629 (2014).Google Scholar
Karagoz, Z. and Canbay, C.A.: Relationship between transformation temperatures and alloying elements in Cu–Al–Ni shape memory alloys. J. Therm. Anal. Calorim. 114(3), 1069 (2013).Google Scholar
Ibarra, A., Juan, J.S., Bocanegra, E.H., and , M.L.: Thermo-mechanical characterization of Cu–Al–Ni shape memory alloys elaborated by powder metallurgy. Mater. Sci. Eng., A 438440, 782 (2006).Google Scholar
Recarte, V., Pérez-Landazábal, J.I., , M.L., and San Juan, J.: Study by resonant ultrasound spectroscopy of the elastic constants of the β phase in Cu–Al–Ni shape memory alloys. Mater. Sci. Eng., A 370(1–2), 488 (2004).Google Scholar
Font, J., Cesari, E., Muntasell, J., and Pons, J.: Thermomechanical cycling in Cu–Al–Ni-based melt-spun shape-memory ribbons. Mater. Sci. Eng., A 354(1–2), 207 (2003).Google Scholar
Pérez-Landazábal, J.I., Recarte, V., Sánchez-Alarcos, V., , M.L., and Juan, J.S.: Study of the stability and decomposition process of the β phase in Cu–Al–Ni shape memory alloys. Mater. Sci. Eng., A 438440, 734 (2006).CrossRefGoogle Scholar
Tadaki, T.: Cu-based shape memory alloys. In Shape Memory Materials. (Cambridge University Press, Cambridge, UK, 1998); p. 97.Google Scholar
Miyazaki, S., Kawai, T., and Otsuka, K.: Study of fracture in Cu–Al–Ni shape memory bicrystals. J. Phys. Colloques 43(C4), C4-813 (1982).CrossRefGoogle Scholar
Horikawa, H., Ichinose, S., Morii, K., Miyazaki, S., and Otsuka, K.: Orientation dependence of β1 → β1′ stress-induced martensitic transformation in a Cu–AI–Ni alloy. Metall. Trans. A 19(4), 915 (1988).Google Scholar
Schwartz, M.: Smart Materials (CRC Press, Boca Raton, FL, 2008).Google Scholar
Otsuka, K., Sakamoto, H., and Shimizu, K.: Successive stress-induced martensitic transformations and associated transformation pseudoelasticity in Cu–Al–Ni alloys. Acta Metall. 27(4), 585 (1979).CrossRefGoogle Scholar
Sampath, V.: Studies on the effect of grain refinement and thermal processing on shape memory characteristics of Cu–Al–Ni alloys. Smart Mater. Struct. 14(5), S253 (2005).Google Scholar
Sugimoto, K., Kamei, K., Matsumoto, H., Komatsu, S., Akamatsu, K., and Sugimoto, T.: Grain-refinement and the related phenomena in quaternary Cu–Al–Ni–Ti shape memory alloys. J. Phys. Colloques 43(C4), C4-761 (1982).Google Scholar
Sutou, Y., Omori, T., Kainuma, R., Ishida, K., and Ono, N.: Enhancement of superelasticity in Cu–Al–Mn–Ni shape-memory alloys by texture control. Metall. Mater. Trans. A 33(9), 2817 (2002).Google Scholar
Hondros, E. and Seah, M.: Segregation to interfaces. Int. Met. Rev. 22(1), 262 (1977).Google Scholar
Stein, D., Johnson, W., White, C., Chadwick, G., and Smith, D.: Grain Boundary Structure and Properties (Academic Press, New York, 1976).Google Scholar
Morris, M.A. and Gunter, S.: Effect of heat treatment and thermal cycling on transformation temperatures of ductile Cu–Al–Ni–Mn–B alloys. Scr. Metall. Mater. 26(11), 1663 (1992).Google Scholar
Sarı, U. and Kırındı, T.: Effects of deformation on microstructure and mechanical properties of a Cu–Al–Ni shape memory alloy. Mater. Charact. 59(7), 920 (2008).CrossRefGoogle Scholar
Yildiz, K. and Kok, M.: Study of martensite transformation and microstructural evolution of Cu–Al–Ni–Fe shape memory alloys. J. Therm. Anal. Calorim. 115(2), 1509 (2014).Google Scholar
Sutou, Y., Omori, T., Yamauchi, K., Ono, N., Kainuma, R., and Ishida, K.: Effect of grain size and texture on pseudoelasticity in Cu–Al–Mn-based shape memory wire. Acta Mater. 53(15), 4121 (2005).CrossRefGoogle Scholar
Sarı, U. and Aksoy, İ.: Electron microscopy study of 2H and 18R martensites in Cu–11.92wt% Al–3.78wt% Ni shape memory alloy. J. Alloys Compd. 417(1–2), 138 (2006).Google Scholar
Sari, U.: Influences of 2.5wt% Mn addition on the microstructure and mechanical properties of Cu–Al–Ni shape memory alloys. Int. J. Miner., Metall. Mater. 17(2), 192 (2010).Google Scholar
Chang, S.H.: Influence of chemical composition on the damping characteristics of Cu–Al–Ni shape memory alloys. Mater. Chem. Phys. 125(3), 358 (2011).Google Scholar
Van Humbeeck, J., Chandrasekaran, M., and Stalmans, R.: Copper-based shape memory alloys and the martensitic transformation. Proc. Int. Conf. Martensitic Transform. 25, 1015 (1993).Google Scholar
Van Humbeeck, J. and Stalmans, R.: Shape Memory Alloys, Types and Functionalities (John Wiley and Sons, New York, NY, 2002).Google Scholar
Aydogdu, Y., Aydogdu, A., and Adiguzel, O.: Self-accommodating martensite plate variants in shape memory CuAlNi alloys. J. Mater. Process. Technol. 123, 498 (2002).CrossRefGoogle Scholar
Friend, C.M.: The effect of aluminium content on the martensite phase stabilities in metastable CuAlNi alloys. Scr. Metall. 23(10), 1817 (1989).Google Scholar
Saud, S., Hamzah, E., Abubakar, T., Zamri, M., and Tanemura, M.: Influence of Ti additions on the martensitic phase transformation and mechanical properties of Cu–Al–Ni shape memory alloys. J. Therm. Anal. Calorim. 118(1), 111122 (2014).Google Scholar
Lovey, F. and Cesari, E.: On the microstructural characteristics of non-equilibrium γ precipitates in Cu–Zn–Al alloys. Mater. Sci. Eng., A 129(1), 127 (1990).Google Scholar
Hurtado, I., Ratchev, P., Van Humbeeck, J., and Delaey, L.: A fundamental study of the X-phase preciptation in Cu–Al–Ni–Ti-(Mn) shape memory alloys. Acta Mater. 44, 3299 (1995).Google Scholar
Lee, J.S. and Wayman, C.M.: Grain refinement of a Cu–Al–Ni shape memory alloy by Ti and Zr additions. Trans. Jpn. Inst. Met. 27(8), 584 (1986).Google Scholar
Aydogdu, A., Aydogdu, Y., and Adigüzel, O.: Improvement of hardness and microstructures by ageing in shape memory CuAlNi alloys. J. Phys. IV France 07(C5), C5-311 (1997).Google Scholar
Gama, J., Dantas, C., Quadros, N., Ferreira, R., and Yadava, Y.: Microstructure-mechanical property relationship to copper alloys with shape memory during thermomechanical treatments. Metall. Mater. Trans. A. 37(1), 77 (2006).Google Scholar
Xuan, Q., Bohong, J., and Hsu, T.Y.: The effect of martensite ordering on shape memory effect in a copper–zinc–aluminium alloy. Mater. Sci. Eng. 93, 205 (1987).Google Scholar
Salzbrenner, R.J. and Cohen, M.: On the thermodynamics of thermoelastic martensitic transformations. Acta Metall. 27(5), 739 (1979).Google Scholar
Adigüzel, O.: Martensite ordering and stabilization in copper based shape memory alloys. Mater. Res. Bull. 30(6), 755 (1995).Google Scholar
Balo, Ş.N. and Sel, N.: Effects of thermal aging on transformation temperatures and some physical parameters of Cu–13.5wt.%Al–4wt.%Ni shape memory alloy. Thermochim. Acta 536, 1 (2012).Google Scholar
Yang, G., LEE, J., and Jang, W.: Effect of grain refinement on phase transformation behavior and mechanical properties of Cu-based alloy. Trans. Nonferrous Met. Soc. China 19(4), 979 (2009).Google Scholar
Cullity, B.D. and Stock, S.R.: Elements of X-ray Diffraction (Prentice Hall, Boston, MA, 2001).Google Scholar
Patterson, A.L.: The scherrer formula for X-ray particle size determination. Phys. Rev. 56(10), 978 (1939).Google Scholar
Recarte, V., Pérez-Sáez, R., Bocanegra, E., , M., and San Juan, J.: Dependence of the martensitic transformation characteristics on concentration in Cu–Al–Ni shape memory alloys. Mater. Sci. Eng., A 273, 380 (1999).Google Scholar
Dutkiewicz, J., Czeppe, T., and Morgiel, J.: Effect of titanium on structure and martensic transformation in rapidly solidified Cu–Al–Ni–Mn–Ti alloys. Mater. Sci. Eng., A 273, 703 (1999).Google Scholar
Manjeri, R.M.: Low Temperature and Reduced Length Scale Behavior of Shape Memory and Superelastic NiTi and NiTiFe Alloys (University of Central Florida, Orlando, Florida, 2009).Google Scholar
Pons, J. and Cesari, E.: Interaction between γ-phase precipitates and martensite in Cu–Zn–Al alloys. Mater. Struct. 6(2), 115 (1999).Google Scholar
Pons, J. and Portier, R.: Accommodation of γ-phase precipitates in Cu–Zn–Al shape memory alloys studied by high resolution electron microscopy. Acta Mater. 45(5), 2109 (1997).Google Scholar
Kireeva, I., Picornell, C., Pons, J., Kretinina, I., Chumlyakov, Y.I., and Cesari, E.: Effect of oriented γ′ precipitates on shape memory effect and superelasticity in Co–Ni–Ga single crystals. Acta Mater. 68, 127 (2014).Google Scholar
Tatar, C.: Gamma irradiation-induced evolution of the transformation temperatures and thermodynamic parameters in a CuZnAl shape memory alloy. Thermochim. Acta 437, 121 (2005).Google Scholar
Ortín, J. and Planes, A.: Thermodynamics of thermoelastic martensitic transformations. Acta Metall. 37(5), 1433 (1989).Google Scholar
Lojen, G., Anžel, I., Kneissl, A., Križman, A., Unterweger, E., Kosec, B., and Bizjak, M.: Microstructure of rapidly solidified Cu–Al–Ni shape memory alloy ribbons. J. Mater. Process. Technol. 162163, 220 (2005).CrossRefGoogle Scholar
Miyazaki, S., Otsuka, K., Sakamoto, H., and Shimizu, K.: Study of fracture in Cu–Al–Ni shape memory bicrystals. Trans. Jpn. Inst. Met. 22, 244 (1981).Google Scholar
Husain, S.W. and Clapp, P.C.: Grain boundary embrittlement in Cu–AI–Ni β phase alloys. J. Mater. Sci. 22, 2351 (1987).Google Scholar
Lee, J.S. and Wayman, C.M.: Grain refinement of Cu–Zn–Al shape memory alloys. Metallography 19(4), 401 (1986).Google Scholar
Sure, G.N. and Brown, L.C.: The mechanical properties of grain refined β- Cu–Al–Ni strain-memory alloys. Metall. Trans. A 15, 1613 (1984).Google Scholar
Bhattacharya, S., Bhuniya, A., and Banerjee, M.K.: Influence of minor additions on characteristics of CuAlNi alloy. Mater. Sci. Technol. 9(8), 654 (1993).Google Scholar
Adachi, K., Hamada, Y., and Tagawa, Y.: Crystal structure of the X-phase in grain-refined Cu–Al–Ni–Ti shape memory alloys. Scr. Metall. 21(4), 453 (1987).Google Scholar
Kim, J., Roh, D., Lee, E., and Kim, Y.: Effects on microstructure and tensile properties of a zirconium addition to a Cu–Al–Ni shape memory alloy. Metall. Mater. Trans. A 21(2), 741 (1990).Google Scholar
Morris, M.A. and Lipe, T.: Microstructural influence of Mn additions on thermoelastic and pseudoelastic properties of Cu–Al–Ni alloys. Acta Metall. Mater. 42(5), 1583 (1994).Google Scholar
Gao, Y., Zhu, M., and Lai, J.K.L.: Microstructure characterization and effect of thermal cycling and ageing on vanadium-doped Cu–Al–Ni–Mn high-temperature shape memory alloy. J. Mater. Sci. 33(14), 3579 (1998).Google Scholar
Adachi, K., Shoji, K., and Hamada, Y.: Formation of (X) phases and origin of grain refinement effect in Cu–Al–Ni shape memory alloys added with titamium. ISIJ Int. 29(5), 378 (1989).Google Scholar
Vajpai, S.K., Dube, R.K., and Sangal, S.: Microstructure and properties of Cu–Al–Ni shape memory alloy strips prepared via hot densification rolling of argon atomized powder performs. Mater. Sci. Eng., A 529(1), 378 (2011).Google Scholar
Zhu, M., Ye, X., Li, C., Song, G., and Zhai, Q.: Preparation of single crystal CuAlNiBe SMA and its performances. J. Alloys Compd. 478(1), 404410 (2009).Google Scholar
Roh, D.W., Kim, J.W., Cho, T.J., and Kim, Y.G.: Tensile properties and microstructure of microalloyed Cu–Al–Ni–X shape memory alloys. Mater. Sci. Eng., A 136, 17 (1991).Google Scholar
Khan, A. and Delaey, L.: The effect of grain size on the strength of Cu–Al beta'-martensite. Z. Metallkd. 60(12), 949 (1969).Google Scholar
Motoyasu, G., Kaneko, M., Soda, H., and McLean, A.: Continuously cast Cu–Al–Ni shape memory wires with a unidirectional morphology. Metall. Mater. Trans., A 32(3), 585 (2001).Google Scholar
Yang, N., Laird, C., and Pope, D.P.: The cyclic stress-strain response of polycrystalline, pseudoelastic Cu-14.5 wt pct Al-3 wt pct Ni alloy. Metall. Trans. A 8(6), 955 (1977).Google Scholar
Funakubo, H.: Shape Memory Alloys (CRC Press LLC, Boca Raton, FL, 1987).Google Scholar
Husain, S. and Clapp, P.: The intergranular embrittlement of Cu–AI–Ni β-phase alloys. J. Mater. Sci. 22(7), 2351 (1987).Google Scholar
Bhattacharya, K.: Microstructure of Martensite: Why it Forms and how it Gives Rise to the Shape-memory Effect (OUP, Oxford, 2003).Google Scholar
Churchill, C.B., Shaw, J.A., and Iadicola, M.A.: Tips and tricks for characterizing shape memory alloy wire: Part 3-localization and propagation phenomena. Exp. Tech. 33(5), 70 (2009).Google Scholar