Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T10:02:31.205Z Has data issue: false hasContentIssue false

Dose-window dependence on Si crystal orientation in separation by implanted oxygen substrate formation

Published online by Cambridge University Press:  01 December 2004

H. Iikawa
Affiliation:
Research Institute for Advanced Science and Technology, Osaka Prefecture University, Sakai 599-8570 Japan
M. Nakao
Affiliation:
Research Institute for Advanced Science and Technology, Osaka Prefecture University, Sakai 599-8570 Japan
K. Izumi
Affiliation:
Research Institute for Advanced Science and Technology, Osaka Prefecture University, Sakai 599-8570 Japan
Get access

Abstract

Separation by implemented oxygen (SIMOX)(111) substrates have been formed by oxygen-ion (16O+) implantation into Si(111), showing that a so-called “dose-window” at 16O+-implantation into Si differs from Si(100) to Si(111). In SIMOX(100), an oxygen dose of 4 × 1017/cm2 into Si(100) is widely recognized as the dose-window when the acceleration energy is 180 keV. For the first time, our work shows that an oxygen dose of 5 × 1017/cm2 into Si(111) is the dose-window for the formation of SIMOX(111) substrates when the acceleration energy is 180 keV. The difference between dose-windows is caused by anisotropy of the crystal orientation during growth of the faceted buried SiO2. We also numerically analyzed the data at different oxidation velocities for each facet of the polyhedral SiO2 islands. Numerical analysis results show good agreement with the experimental data.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Wilk, G.D., Wallace, R.M. and Anthony, J.M.: High-k gate dielectrics: Current status and materials properties considerations. J. Appl. Phys. 89, 5243 (2001).CrossRefGoogle Scholar
2Treichel, H., Withers, B., Ruhl, G., Ansmann, P., Wurl, R., Muller, Ch., Dietlmeier, M. and Maier, G. Low dielectric constant materials for interlayer dielectrics, in Handbook of Low and High Dielectric Constant Materials and Their Applications, Vol. 1, edited by Nalwa, H.S. (Academic Press, San Diego, CA, 1999), p. 1CrossRefGoogle Scholar
3Takagi, S., Mizuno, T., Sugiyama, N., Tezuka, T. and Kurobe, A.: Strained-Si-on-insulator (strained-SOI) MOSFETs-concept. Struct. Dev. Charact. IEICE Trans. Electron. E84–C, 1043 (2001).Google Scholar
4Hirai, S., Jobe, F., Nakao, M. and Izumi, K.: Study on metamorphosing top Si layer of SOI wafer into 3C-SiC using conventional electric furnace. Mater. Sci. Forum 389, 347 (2002).Google Scholar
5Yuan, C., Steckl, A.J. and Loboda, M.J.: Effect of carbonization on the growth of 3C-SiC on Si (111) by silacyclobutane. Appl. Phys. Lett. 64, 3000 (1994).Google Scholar
6Izumi, K., Doken, M. and Ariyoshi, H.: C.M.O.S. devices fabricated on buried SiO2 layers formed by oxygen implantation into silicon. Electron. Lett. 14, 593 (1978).CrossRefGoogle Scholar
7Stoemenos, J. and Margail, J.: Nucleation and growth of oxide precipitates in silicon implanted with oxygen. Thin Solid Films 135, 115 (1986).Google Scholar
8Nakashima, S. and Izumi, K.: Analysis of buried oxide layer formation and mechanism of threading dislocation generation in the substoichiometric oxygen dose region. J. Mater. Res. 8, 523 (1993).CrossRefGoogle Scholar
9Reeson, K.J., Robinson, A.K., Hemment, P.L.F., Marsh, C.D., Christensen, K.N., Booker, G.R., Chater, R.J., Kilner, J.A., Harbeke, G., Steigmeir, E.F. and Celler, G.K.: The role of implantation temperature and dose in the control of the microstructure of SIMOX structures. Microelectron. Eng . 8, 163 (1988).CrossRefGoogle Scholar
10Nakashima, S., Katayama, T., Miyamura, Y., Matsuzaki, A., Imai, M., Izumi, K., and Ohwada, N.: Thickness increment of buried oxide in a SIMOX wafer by high-temperature oxidation, in IEEE International SOI Conference Proceedings, (1994), p. 71.Google Scholar
11Matsumura, A., Hamaguchi, I., Kawamura, K., Sasaki, T., Takayama, S. and Nagatake, Y.: Technological innovation in low-dose SIMOX wafers fabricated by an internal thermal oxidation (ITOX) process. Microelectron. Eng. 66, 400 (2003).Google Scholar
12Ogura, A.: Extension of dose window for low-dose separation by implanted oxygen. J. Electrochem. Soc. 145, 1735 (1998).Google Scholar
13Iikawa, H., Nakao, M. and Izumi, K. Estimation of oxygen dose by spectroscopic ellipsometry and investigation of oxide formation mechanism by FT-IR for 16O+-implanted Si wafers, in Silicon-on-Insulator Technology and Devices XI, edited by Cristoloveanu, S. (Electrochem. Soc., Paris, France, 2003), p. 87Google Scholar
14Ziegler, J.F., Biersack, J.P. and Littmark, U.: The Stopping and Range of Ions in Solids, Vol. 1 (Pergamon, New York, 1985)Google Scholar
15White, A.E., Short, K.T., Batstone, J.L., Jacobson, D.C., Poate, J.M. and West, K.W.: Mechanisms of buried oxide formation by ion implantation. Appl. Phys. Lett. 50, 19 (1987).CrossRefGoogle Scholar
16Gibbons, J.F., Johnson, W.S. and Mylroie, S.W.: Projected Range Statistics (John Wiley and Sons, New York, NY, 1975)Google Scholar
17Iikawa, H., Nakao, M., Gruska, B. and Izumi, K.: High-precision analysis of oxygen depth profile in 16O+-implanted silicon substrates by spectroscopic ellipsometry. J. Electrochem. Soc. 151, 373 (2004).Google Scholar
18Nakashima, S. and Izumi, K.: Surface morphology of oxygen-implanted wafers. J. Mater. Res. 5, 1918 (1990).CrossRefGoogle Scholar
19Shimura, F.: Octahedral precipitates in high temperature annealed Czochralski-grown silicon. J. Cryst. Growth 54, 588 (1981).Google Scholar
20Ponce, F.A., Yamashita, T. and Hahn, S.: Structure of thermally induced microdefects in Czochralski silicon after high-temperature annealing. Appl. Phys. Lett. 43, 1051 (1983).CrossRefGoogle Scholar
21Stoemenos, J., Margail, J., Jaussaud, C., Dupuy, M. and Bruel, M.: SiO2 buried layer formation by subcritical dose oxygen-ion implantation. Appl. Phys. Lett. 48, 1470 (1986).CrossRefGoogle Scholar
22Hu, S.M.Oxygen precipitation in silicon, in Oxygen, Carbon, and Nitrogen in Crystalline Silicon, edited by Mikkelesen, J.C. Jr., Pearton, S.J., Corbett, J.W., and Pennycook, S.J. (Mater. Res. Soc. Symp. Proc. 59, Pittsburgh, PA, 1986) p. 249Google Scholar
23Deal, B.E. and Grove, A.S.: General relationship for thermal oxidation of silicon. J. Appl. Phys. 36, 3770 (1965).Google Scholar
24Wada, K., Inoue, N. and Kohra, K.: Diffusion-limited growth of oxide precipitates in Czochralski silicon. J. Cryst. Growth 49, 749 (1980).CrossRefGoogle Scholar
25Bean, K.E. and Gleim, P.S.: The influence of crystal orientation on silicon semiconductor processing. Proc. IEEE 57, 1469 (1969).Google Scholar
26Stoemenos, J., Reeson, K.J., Robinson, A.K. and Hemment, P.L.F.: Dislocation formation related with high oxygen dose implantation on silicon. J. Appl. Phys. 69, 793 (1991).CrossRefGoogle Scholar