Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T15:05:00.356Z Has data issue: false hasContentIssue false

Domain structures in Pb(Zr, Ti)O3 and PbTiO3 thin films

Published online by Cambridge University Press:  31 January 2011

L. D. Madsen
Affiliation:
Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario, Canada L8S 4M1
E. M. Griswold
Affiliation:
Materials and Metallurgical Engineering, Queen's University, Kingston, Ontario, Canada K7L 3N6
L. Weaver
Affiliation:
Materials and Metallurgical Engineering, Queen's University, Kingston, Ontario, Canada K7L 3N6
Get access

Abstract

The microstructure of Pb(Zr, Ti)O3 (PZT) and PbTiO3 (PT) thin films deposited by the sol-gel method and chemical vapor deposition, respectively, were examined by transmission electron microscopy (TEM). Domains with ∼7 and ∼20 nm widths were found for the PZT and PT thin films, respectively. The traditional parallel twin or wedge-type structures found in bulk ceramics have been observed in thin films. Differences between observed grain sizes and previous studies of similar compounds (in bulk form) are accounted for by geometrical considerations related to crystallographic factors. Finally, a classification scheme for domains in PZT and PT thin films based on these and other published results of several researchers is presented. Domain sizes varied according to three categories: mono-domains (2–50 nm in diameter), domains in spherulite lamellae (28–130 nm wide), and twins in conventional large grains (5–150 nm wide). The mono-domains are related to small grain sizes, while the lamellae are a function of the nucleation and growth associated with sol-gel processing.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Hench, L. L. and West, J. K., Principles of Electronic Ceramics (Wiley, Toronto, 1990), Chap. 6.Google Scholar
2.Zheleva, T., Tiwari, P., and Narayan, J., in Ferroelectric Thin Films III, edited by Tuttle, B. A., Myers, E. R., Desu, S. B., and Larsen, P. K. (Mater. Res. Soc. Symp. Proc. 310, Pittsburgh, PA, 1993), p. 215.Google Scholar
3.Madsen, L. D., Properties of Lead Titanate Thin Films Produced by Chemical Vapour Deposition, Ph.D. Thesis, Dept. of Materials Science and Engineering, McMaster University (1994); L. D. Madsen, L. Weaver, and A. J. Clark, Can. J. Phys. 74, 580 (1996).Google Scholar
4.Griswold, E. M., Weaver, L., Sayer, M., and Calder, I. D., J. Mater. Res. 10, 3149 (1995).CrossRefGoogle Scholar
5.Chang, P-H., Coviello, M. D., and Scott, A. F., in Specimen Preparation for Transmission Electron Microscopy, edited by Bravman, J. C., Anderson, R. M., and McDonald, M. L. (Mater. Res. Soc. Symp. Proc. 115, Pittsburgh, PA, 1988), p. 93.Google Scholar
6.Weaver, L., Microsc. Res. Technique 36 (2), 368 (1997).3.0.CO;2-H>CrossRefGoogle Scholar
7. Virtual Laboratories, Albuquerque, NM.Google Scholar
8.Matsuo, Y. and Sasaki, H., J. Am. Ceram. Soc. 49 (4), 229 (1966); R. W. Rice and R. C. Pohanka, J. Am. Ceram. Soc. 62 (11–12), 559 (1979).CrossRefGoogle Scholar
9.Demczyk, B. G., Khachturyan, A. G., and Thomas, G., Scripta Metallurgica 21 (7), 967 (1987).CrossRefGoogle Scholar
10.Tanner, L. E. and Ashby, M. F., Phys. Status Solidi 33, 59 (1969).CrossRefGoogle Scholar
11.Hsueh, C-C. and Mecartney, M. L., in Ferroelectric Thin Films, edited by Myers, E. R. and Kingon, A. I. (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1990), p. 219.Google Scholar
12.Goral, J. P., Al-Jassim, M. M., and Huffman, M., in Ferroelectric Thin Films, edited by Myers, E. R. and Kingon, A. I. (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1990), p. 225.Google Scholar
13.Myers, S. A. and Chapin, L. N., in Ferroelectric Thin Films, edited by Myers, E. R. and Kingon, A. I. (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1990), p. 231.Google Scholar
14.Gao, Y., Bai, G., Merkle, K. L., Shi, Y., Chang, H. L. M., Shen, Z., and Lam, D. J., J. Mater. Res. 8, 145 (1993).CrossRefGoogle Scholar
15.Kingon, A. I., Hsieh, K. Y., King, L. L. H., Rou, S. H., Bachmann, K. J., and Davis, R. F., in Ferroelectric Thin Films, edited by Myers, E. R. and Kingon, A. I. (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1990), p. 49.Google Scholar
16.Weaver, L., Madsen, L. D., and Griswold, E., Inst. of Physics Conf. Ser. 117 (6), 383 (1991).Google Scholar
17.Martirena, H. T. and Burfoot, J. C., J. Phys. C: Solid State Phys. 7, 3182 (1974).CrossRefGoogle Scholar
18.Reaney, I. M., Brooks, K., Klissurska, R., Pawlaczyk, C., and Setter, N., J. Am. Ceram. 77 (5), 1209 (1994).CrossRefGoogle Scholar
19.Randall, C. A., Barber, D. J., and Whatmore, R. W., Inst. Phys. Conf. Ser. 78 (13), 531 (1985).Google Scholar
20.Michel, C., Phillips Tech. Rev. 36 (1), 18 (1976).Google Scholar
21.Lucuta, P. G., J. Am. Ceram. Soc. 72 (6), 933 (1989).CrossRefGoogle Scholar
22. COST Workshop on Ferroelectrics in Stockholm (May 1994).Google Scholar
23.Myers, E., private communication (1993).Google Scholar
24.Voigt, J. A., Tuttle, B. A., Headley, T. J., Eatough, M. O., Lamppa, D. L., and Goodnow, D., in Ferroelectric Thin Films III, edited by Tuttle, B. A., Myers, E. R., Desu, S. B., and Larsen, P.K. (Mater. Res. Soc. Symp. Proc. 310, Pittsburgh, PA, 1993), p. 15.Google Scholar