Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T15:09:18.285Z Has data issue: false hasContentIssue false

Diffusion characteristics study of locally Er-doped noncongruent, Li-deficient Ti:Er:LiNbO3 strip waveguide

Published online by Cambridge University Press:  25 November 2011

De-Long Zhang*
Affiliation:
Department of Opto-electronics and Information Engineering, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, People’s Republic of China; and Key Laboratory of Optoelectronic Information Technology, Tianjin University, Ministry of Education, Tianjin 300072, People’s Republic of China; and Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong, People’s Republic of China
Bei Chen
Affiliation:
Department of Opto-electronics and Information Engineering, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, People’s Republic of China; and Key Laboratory of Optoelectronic Information Technology, Tianjin University, Ministry of Education, Tianjin 300072, People’s Republic of China; and Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong, People’s Republic of China
Ping-Rang Hua
Affiliation:
Department of Opto-electronics and Information Engineering, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, People’s Republic of China; and Key Laboratory of Optoelectronic Information Technology, Tianjin University, Ministry of Education, Tianjin 300072, People’s Republic of China; and Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong, People’s Republic of China
Dao-Yin Yu
Affiliation:
Department of Opto-electronics and Information Engineering, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, People’s Republic of China; and Key Laboratory of Optoelectronic Information Technology, Tianjin University, Ministry of Education, Tianjin 300072, People’s Republic of China; and Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong, People’s Republic of China
Edwin Y-B. Pun
Affiliation:
Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: dlzhang@tju.edu.cn
Get access

Abstract

Locally Er3+-doped noncongruent, Li-deficient Ti:Er:LiNbO3 strip waveguide was fabricated with a technological process in sequence of preparation of Li-deficient LiNbO3 substrate using Li-poor vapor transport equilibration (VTE), Er3+, and Ti4+ diffusion in wet O2. The Li2O content change was evaluated from the measured birefringence. The Ti4+ and Er3+ profile characteristics in the waveguide were studied by secondary ion mass spectrometry. The results show that the VTE and subsequent Er3+ diffusion procedures resulted in totally ∼0.8 mol% Li2O content reduction. The Ti4+ profile follows a sum of two error functions in the width direction and a Gaussian function in the depth direction of waveguide. The Er3+ profile follows also a Gaussian function. At 1130 °C, the Ti4+ surface/depth diffusivity and surface concentration are 8.5 ± 1.3/1.98 ± 0.06 μm2/h and ∼7 mol%, respectively, and the Er3+ diffusivity and surface concentration are (12.8 ± 0.3) × 10−2 μm2/h and ∼0.6 mol%, respectively.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Brinkmann, R., Sohler, W., and Suche, H.: Continuous-wave erbium-diffused LiNbO3 waveguide laser. Electron. Lett. 27, 415 (1991).CrossRefGoogle Scholar
2.Becker, Ch., Oesselke, T., Pandavenes, J., Ricken, R., Rochhausen, K., Schreiberg, G., Sohler, W., Suche, H., Wessel, R., Balsamo, S., Montrosset, I., and Sciancalepore, D.: Advanced Ti:Er:LiNbO3 waveguide lasers. IEEE J. Sel. Top. Quantum Electron. 6, 101 (2000).CrossRefGoogle Scholar
3.Amin, J., Aust, J.A., and Sanford, N.A.: Z-propagating waveguide lasers in rare-earth-doped Ti:LiNbO3. Appl. Phys. Lett. 69, 3785 (1996).CrossRefGoogle Scholar
4.Helmfrid, S., Arvidsson, G., Webjorn, J., Linnarsson, M., and Pihl, T.: Stimulated emission in Er:Ti:LiNbO3 channel waveguides close to 1.53 micron transition. Electron. Lett. 27, 913 (1991).CrossRefGoogle Scholar
5.Huang, C.H. and McCaughan, L.: 980-nm-pumped Er-doped LiNbO3 waveguide amplifiers: A comparison with 1484-nm pumping. IEEE J. Sel. Top. Quantum Electron. 2, 367 (1996).CrossRefGoogle Scholar
6.Huang, C.H. and McCaughan, L.: Photorefractive-damage-resistant Er-indiffused MgO: LiNbO3 ZnO-waveguide amplifiers and lasers. Electron. Lett. 33, 1639 (1997).CrossRefGoogle Scholar
7.Cantelar, E., Torchia, G.A., Sanz-García, J.A., Pernas, P.L., Lifante, G., and Cussó, F.: Red, green, and blue simultaneous generation in aperiodically poled Zn-diffused LiNbO3:Er3+/Yb3+ nonlinear channel waveguides. Appl. Phys. Lett. 83, 2991 (2003).CrossRefGoogle Scholar
8.Das, B.K., Ricken, R., and Sohler, W.: Integrated optical distributed feedback laser with Ti:Fe:Er:LiNbO3 waveguide. Appl. Phys. Lett. 82, 1515 (2003).CrossRefGoogle Scholar
9.Das, B.K., Ricken, R., Quiring, V., Suche, H., and Sohler, W.: Distributed feedback-distributed Bragg reflector coupled cavity laser with a Ti:(Fe:)Er:LiNbO3 waveguide. Opt. Lett. 29, 165 (2004).CrossRefGoogle ScholarPubMed
10.Schreiber, G., Hofmann, D., Grundkotter, W., Lee, Y.L., Suche, H., Quiring, V., Ricken, R., and Sohler, W.: Nonlinear integrated optical frequency converters with periodically poled Ti:LiNbO3 waveguides. Proc. SPIE 4277, 144 (2001).CrossRefGoogle Scholar
11.Caccavale, F., Segato, F., Mansour, I., Almeida, J.M., and Leite, A.P.: Secondary ion mass spectrometry study of erbium diffusion in lithium niobate crystals. J. Mater. Res. 13, 1672 (1998).CrossRefGoogle Scholar
12.Baumann, I., Brinkmann, R., Dinand, M., Sohler, W., Beckers, L., Buchal, Ch., Fleuster, M., Holzbrecher, H., Paulus, H., Muller, K-H., Gog, Th., Materlik, G., Witte, O., Stolz, H., and von der Osten, W.: Erbium incorporation in LiNbO3 by diffusion-doping. Appl. Phys. A Mater. Sci. Process. 64, 33 (1997).CrossRefGoogle Scholar
13.Zhang, D.L., Chen, B., and Pun, E.Y.B.: Locally Er-doped high-solubility LiNbO3 crystal prepared by Li-poor vapor transport equilibration and Er codiffusion. J. Am. Ceram. Soc. 93, 3837 (2010).CrossRefGoogle Scholar
14.Zhang, D.L., Chen, B., Hua, P.R., Yu, D.Y., and Pun, E.Y.B.: Demonstration of Er3+ diffusivity and solubility increases in off-congruent, Li-deficient LiNbO3 crystal. J. Mater. Res. 26, 1524 (2011).CrossRefGoogle Scholar
15.Holmes, R.J. and Smyth, D.M.: Titanium diffusion into LiNbO3 as a function of stoichiometry. J. Appl. Phys. 55, 3531 (1984).CrossRefGoogle Scholar
16.Wöhlecke, M., Corradi, G., and Betzler, K.: Optical methods to characterise the composition and homogeneity of lithium niobate single crystals. Appl. Phys. B 63, 323 (1996).CrossRefGoogle Scholar
17.Schlarb, U. and Betzler, K.: Refractive indices of lithium niobate as a function of temperature, wavelength, and composition: A generalized fit. Phys. Rev. B 48, 15613 (1993).CrossRefGoogle ScholarPubMed
18.Sugii, K., Fukuma, M., and Iwasaki, H.: A study of titanium diffusion into LiNbO3 waveguides by electron probe analysis and x-ray diffraction methods. J. Mater. Sci. 13, 523 (1978).CrossRefGoogle Scholar
19.Noda, J., Fukuma, M., and Saito, S.: Effect of Mg diffusion on Ti-diffused LiNbO3 waveguides. J. Appl. Phys. 49, 3150 (1978).CrossRefGoogle Scholar
20.Noda, J. and Fukuma, M.: Optical properties of titanium-diffused LiNbO3 strip waveguides and their coupling-to-a-fiber characteristics. Appl. Opt. 19, 591 (1980).Google Scholar
21.Sjöberg, A., Arvidsson, G., and Lipovskii, A.A.: Characterization of waveguides fabricated by titanium diffusion in magnesium-doped lithium niobate. J. Opt. Soc. Am. B: Opt. Phys. 5, 285 (1988).CrossRefGoogle Scholar
22.Baumann, I., Bosso, S., Brinkmann, R., Corsini, R., Dinand, M., Greiner, A., Schäfer, K., Söchtig, J., Sohler, W., Suche, H., and Wessel, R.: Er-doped integrated optical devices in LiNbO3. IEEE J. Sel. Top. Quantum Electron. 2, 355 (1996).CrossRefGoogle Scholar
23.Bordui, P.F., Norwood, R.G., Jundt, D.H., and Fejer, M.M.: Preparation and characterization of off-congruent lithium niobate crystals. J. Appl. Phys. 71, 875 (1992).CrossRefGoogle Scholar