Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T23:24:32.213Z Has data issue: false hasContentIssue false

Diffusion calculations for the 80-K-to-110-K Bi(Pb)SrCaCuO superconducting phase transformation

Published online by Cambridge University Press:  31 January 2011

Wen Zhu
Affiliation:
Ceramic Engineering Research Group, Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario, Canada L8S 4L7
Chu Kun Kuo
Affiliation:
Ceramic Engineering Research Group, Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario, Canada L8S 4L7
Patrick S. Nicholson
Affiliation:
Ceramic Engineering Research Group, Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario, Canada L8S 4L7
Get access

Abstract

A diffusion model is proposed to fit the measured chemical-transformation rates of the Bi(Pb)CaCuSrO 80-K phase to 110-K phase. Diffusion coefficients and activation energies in PO2 = 0.08 and 0.21 atm are reported. The low diffusion rates and high activation energies suggest cation diffusion controls the transformation.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ullrich, M., Schaper, W., and Freyhardt, H.C., Supercond. Sci. Technol. 3, 602 (1990).CrossRefGoogle Scholar
2.Pissas, M., Nicolaides, G.K., Psycharis, V., and Niarchos, D., Physica C 196, 157 (1992).CrossRefGoogle Scholar
3.Sandhage, K.H., Riley, G.N. Jr, and Carter, W.L., Met, J.. (JOM) 43(3), 21 (1991).CrossRefGoogle Scholar
4.Zhu, W. and Nicholson, P.S., J. Mater. Res. 7, 38 (1992).CrossRefGoogle Scholar
5.Zhu, W. and Nicholson, P.S., J. Appl. Phys. 73, 8423 (1993).CrossRefGoogle Scholar
6.Luo, J.S., Merchant, N., Maroni, V.A., Gruen, D.M., Tani, B.S., Carter, W.L., and Riley, G.N. Jr, Appl. Supercond. 1, 101 (1993).Google Scholar
7.Sung, Y.S. and Hellstrom, E.E., J. Am. Ceram. Soc. 78, 2003 (1995).CrossRefGoogle Scholar
8.Carter, W.L., Riley, G.N. Jr, Luo, J.S., Merchant, N., and Maroni, V.A., Appl. Supercond. 1, 1523 (1993).CrossRefGoogle Scholar
9.Hu, Q.Y., Liu, H.K., and Dou, S.X., Physica C 250, 7 (1995).CrossRefGoogle Scholar
10.Gao, X-H., Li, J., Jiang, S-F., Gao, D., Zheng, G-D., and Gao, S., Physica C 244, 321 (1995).CrossRefGoogle Scholar
11.Nobumasa, H., Shimizu, K., Kitano, Y., and Kawai, T., Jpn. J. Appl Phys. 27, L846 (1988).Google Scholar
12.Kijima, N., Endo, H., Tsuchiya, J., Sumiyama, A., Mizuno, M., and Oguri, Y., Jpn. J. Appl. Phys. 27, L1852 (1988).CrossRefGoogle Scholar
13.Horyn, R. and Sikora, A., Physica C 185–189, Part I, 475 (1991).CrossRefGoogle Scholar
14.Luo, J.S., Faudot, F., Chevalier, J-P., Portier, R., and Michel, D., J. Solid State Chem. 89, 94 (1990).CrossRefGoogle Scholar
15.Komatsu, H., Kato, Y., Miyashita, S., Inoue, Y., and Hayashi, S., Physica C 190, 14 (1991).CrossRefGoogle Scholar
16.Morgan, P.E.D, Housley, R.M., Porter, J.R., and Ratto, J.J., Physica C 176, 279 (1991).CrossRefGoogle Scholar
17.Zhu, W., Ph.D. Thesis, McMaster University, Hamilton, Ontario, Canada (1995).Google Scholar
18.Routbort, J.L., Rothman, S.J., Flandermeyer, B.K., Nowicki, L.J., and Baker, J.E., Defect Diffus. Forum 59, 213 (1988).CrossRefGoogle Scholar
19.Rothman, S.J., Routbort, J.L., Liu, J-Z., Downey, J.W., Thompson, L.J., Fang, Y., Shi, D., Baker, J.E., Rice, J.P., Ginsberg, D.M., Han, P.D., and Payne, D.A., Defect Diffus. Forum 75, 57 (1991).CrossRefGoogle Scholar
20.Tu, K.N. and Shi, L.T., Defect Diffus. Forum 75, 43 (1991).CrossRefGoogle Scholar
21.Runde, M., Routbort, J.L., Mundy, J.N., Rothman, S.J., Wiley, C.L., and Xu, X., Phys. Rev. B 46, 3142 (1992).CrossRefGoogle Scholar
22.Runde, M., Routbort, J.L., Rothman, S.J., Goretta, K.C., Mundy, J.N., Xu, X., and Baker, J.E., Phys. Rev. B 45, 7375 (1992).CrossRefGoogle Scholar
23.Zhou, C.J., Xie, X.M., and Chen, T.G., Physica C 191, 185 (1992).CrossRefGoogle Scholar
24.Zhu, W. and Nicholson, P.S., J. Electrochem. Soc. 142, 513 (1995).CrossRefGoogle Scholar
25.Zhu, W., Kuo, C.K., and Nicholson, P.S., J. Am. Ceram. Soc. 82, 1617 (1999).CrossRefGoogle Scholar
26.Routbort, J.L., Rothman, S.J., Chen, N., Mundy, J.N., and Baker, J.E., Phys. Rev. B 43, 5489 (1991).CrossRefGoogle Scholar
27.Gupta, D., Shinde, S.L., and Laibowitz, R.B., in High Temperature Superconducting Compounds II, edited by Whang, S.H., Das Gupta, A., and Laibowitz, R.B. (The Minerals, Metals and Materials Society, Warrendale, PA, 1990), p. 377.Google Scholar
28.Chen, N., Rothman, S.J., and Routbort, J.L., J. Mater. Res. 8, 2465 (1993).CrossRefGoogle Scholar
29.Slinkina, M.V., Volosentseva, L.I., Dontsov, G.I., Zhu-kovskaya, A.S., and Fotiev, A.A., Superconductivity 5, 1819 (1992).Google Scholar
30.Zhu, W. and Nicholson, P.S., Mater. Lett. 12, 191 (1991).CrossRefGoogle Scholar
31.Tarascon, J.M., McKinnon, W.R., Barboux, P., Hwang, D.M., Bagley, B.G., Greene, L.H., Hull, G.W., LePage, Y., Stoffel, N., and Giroud, M., Phys. Rev. B 38, 8885 (1988).CrossRefGoogle Scholar
32.Eibl, O., Physica C 168, 215 (1990).CrossRefGoogle Scholar
33.Crank, J., The Mathematics of Diffusion, 2nd ed. (Clarendon Press, Oxford, United Kingdom, 1975), Chap. 4, pp. 4468.Google Scholar
34.Idemoto, Y., Fujiwara, S., and Fueki, K., Physica C 179, 96 (1991).CrossRefGoogle Scholar
35.Goretta, K.C., Zamirowski, F.J., Calderoñ-Moreno, J.M., Miller, D.J., Chen, N., Holesinger, T.G., and Routbort, J.L., J. Mater. Res. 9, 541 (1994).CrossRefGoogle Scholar