Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T14:29:17.508Z Has data issue: false hasContentIssue false

Determination of displacement vector on 180° domain boundary and polarization arrangements in lead titanate crystals

Published online by Cambridge University Press:  31 January 2011

Chen-Chia Chou
Affiliation:
Materials Science and Technology Center and Department of Mechanical Engineering, National Taiwan Institute of Technology, 43 Keelung Road Section 4, Taipei, Taiwan 10672, Republic of China
C. Marvin Wayman
Affiliation:
Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801
Get access

Abstract

180° domain boundaries in flux-grown lead titanate single crystals show intriguing domain boundary extreme fringe contrast using transmission electron microscopy. Symmetrically distributed domain boundaries with alternate contrast have been observed, indicating that opposite displacement vectors exist one by one at boundaries. If appropriate reflection vectors were employed, an inclined domain boundary shows reversed fringe contrast. An analysis based upon the two-beam dynamical theory and a rule similar to stacking-fault contrast analysis was employed to predict the geometric configuration of a 180° domain boundary using the extreme fringe contrast (EFC) behavior. Appropriately choosing reflection vectors and utilizing the EFC reversal, a displacement vector as well as the polarization vector arrangement across a 180° domain boundary can be unambiguously identified. Employing the information derived from diffraction patterns and a tilting experiment across a nearby 90° boundary, the whole polarization configuration can be uniquely determined.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Zhang, C. M., Pan, W. Y., Jang, S. J., and Cross, L. E., J. Appl. Phys. 64 (11), 6445 (1988).CrossRefGoogle Scholar
2.Dederiches, H. and Arlt, G., Ferroelectrics 68, 281 (1986).Google Scholar
3.Merz, W. J., Phys. Rev. 88, 421 (1952).CrossRefGoogle Scholar
4.Hooton, J. A. and Merz, W. J., Phys. Rev. 98, 409 (1955).Google Scholar
5.Robinson, G. Y. and White, R. M., Appl. Phys. Lett. 10, 320 (1967).CrossRefGoogle Scholar
6.King, G. and Goo, E. K., J. Am. Ceram. Soc. 73 (6), 1534 (1990).Google Scholar
7.King, G., Goo, E. K., Yamamoto, T., and Okazaki, K., J. Am. Ceram. Soc. 71 (6), 454 (1988).CrossRefGoogle Scholar
8.Park, B. M. and Chung, S. J., J. Am. Ceram. Soc. 77 (12), 3193 (1994).Google Scholar
9.Hu, Y. H., Chan, H. M., Wen, Z. X., and Harmer, M. P., J. Am. Ceram. Soc. 69 (8), 594 (1986), and References therein.CrossRefGoogle Scholar
10.Tanaka, M. and Honjo, G., J. Phys. Soc. Jpn. 19, 954 (1964).CrossRefGoogle Scholar
11.Shakmanov, V. V., Spivak, G. V., and Yakunin, S. I., Sov. Phys.-Solid State 12 (8), 1827 (1971).Google Scholar
12.Demczyk, B. G., Ray, R. S., and Thomas, G., J. Am. Ceram. Soc. 73 (3), 615 (1990).CrossRefGoogle Scholar
13.Shirane, G., Hoshino, S., and Suzuki, K., Phys. Rev. 80, 1105 (1950).CrossRefGoogle Scholar
14.Megaw, H. D., Proc. Roy. Soc. A 189, 261 (1947).Google Scholar
15.Shirane, G. and Hoshino, S., J. Phys. Soc. Jpn. 6, 265 (1951).CrossRefGoogle Scholar
16.Parker, T. J. and Burfoot, J. C., Brit. J. Appl. Phys. 17, 207 (1966).Google Scholar
17.Chou, C. C., Yang, L. C., and Wayman, C. M., Mater. Chem. Phys. 36, 57 (1993).CrossRefGoogle Scholar
18.Chou, C. C., Tsai, S. M., Sun, B. N., Huang, Y., Yang, L. C., and Wayman, C. M., Proc. Ann. Conf. Chinese Soc. for Mat. Sci. 2, 83 (1993).Google Scholar
19.Chou, C. C., Huang, Y., Sun, B. N., Yang, L. C., and Wayman, C. M., Advanced Materials '93, I/B: Magnetic, Fullerene, Dielectric, Ferroelectric, Diamond and Related Materials, edited by M. Homma, E. Osawa, M. Yasufuku, M. Wakatsuki, and N. Ichinose, Trans. Mater. Res. Soc. Jpn. 14B, 1619 (1994).Google Scholar
20.Little, E. A., Phys. Rev. 98, 78 (1955).Google Scholar
21.Gevers, R., Van Landuyt, J., and Amelinckx, S., Phys. Status Solidi 11, 689 (1965).CrossRefGoogle Scholar
22.Gevers, R., Delavignette, P., Blank, H., and Amelinckx, S., Phys. Status Solidi 4, 383 (1964).CrossRefGoogle Scholar
23.Gevers, R., Delavignette, P., Van Landuyt, J., and Amelinckx, S., Phys. Status Solidi 5, 595 (1964).Google Scholar
24.Gevers, R., Blank, H., and Amelinckx, S., Phys. Status Solidi 13, 449 (1966).CrossRefGoogle Scholar
25.Malis, T. and Gleiter, H., J. Appl. Phys. 47, 5196 (1976).Google Scholar
26.Chou, C. C. and Wayman, C. M., Mater. Trans. JIM 33 (3), 306 (1992).Google Scholar
27.Suchicital, C. T., Ph.Dissertation, D., University of Illinois (1988).Google Scholar
28.Chou, C. C., Chen, C. S., and Tseng, D. Y., Mater. Chem. Phys. 45, 103 (1996).Google Scholar
29.Edington, J. W., Practical Electron Microscopy in Materials Science (Van Nostrand Reinhold Co., New York, 1976), pp. 118134.Google Scholar