Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T00:14:50.187Z Has data issue: false hasContentIssue false

Densification mechanism involved during spark plasma sintering of a codoped α-alumina material: Part I. Formal sintering analysis

Published online by Cambridge University Press:  31 January 2011

C. Guizard
Affiliation:
Laboratoire de Synthèse et Fonctionnalisation des Céramiques, UMR 3080 CNRS/Saint-Gobain, Saint-Gobain C.R.E.E., 84306 Cavaillon Cedex, France
Get access

Abstract

Spark plasma sintering (SPS) of a codoped α-alumina powder has been investigated at temperatures between 850 and 1200 °C. The “grain size versus relative density” trajectory showed a significant grain growth as soon as the residual porosity closed. The densification mechanism was determined by anisothermal (investigation of the heating part of a SPS run) and isothermal methods. It was proposed that grain-boundary sliding, accommodated by oxygen grain-boundary diffusion, governed densification.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Groza, J.R., Curtis, J.D., Krämer, M.: Field-assisted sintering of nanocrystalline titanium nitride. J. Am. Ceram. Soc. 83, 1281 2000CrossRefGoogle Scholar
2.Shen, Z., Johnsson, M., Zhao, Z., Nygren, M.: Spark plasma sintering of alumina. J. Am. Ceram. Soc. 85, 1921 2002CrossRefGoogle Scholar
3.Kim, B.-N., Hiraga, K., Morita, K., Yoshida, H.: Spark plasma sintering of transparent alumina. Scr. Mater. 57, 607 2007CrossRefGoogle Scholar
4.Suganuma, M., Kitagawa, Y., Wada, S., Murayama, N.: Pulsed electric current sintering of silicon nitride. J. Am. Ceram. Soc. 86, 387 2003CrossRefGoogle Scholar
5.Bernard-Granger, G., Guizard, C.: Spark plasma sintering of a commercially available granulated zirconia powder: I. Sintering path and hypotheses about the mechanism(s) controlling densification. Acta Mater. 55, 3493 2007CrossRefGoogle Scholar
6.Bangchao, Y., Jiawen, J., Yican, Z.: Spark-plasma sintering the 8-mol% yttria-stabilized zirconia electrolyte. J. Mater. Sci. Lett. 39, 6863 2004Google Scholar
7.Yamamoto, T., Kitaura, H., Kodera, Y., Ishii, T., Ohyanagi, M., Munir, Z.A.: Consolidation of nanostructured β-SiC by spark plasma sintering. J. Am. Ceram. Soc. 87, 1436 2004CrossRefGoogle Scholar
8.Frage, N., Cohen, S., Meir, S., Kalabukhov, S., Dariel, M.P.: Spark plasma sintering (SPS) of transparent magnesium–aluminate spinel. J. Mater. Sci. 42, 3273 2007CrossRefGoogle Scholar
9.Morita, K., Kim, B-N., Hiraga, K., Yoshida, H.: Fabrication of transparent MgAl2O4 spinel polycrystal by spark plasma sintering processing. Scr. Mater. 58, 1114 2008CrossRefGoogle Scholar
10.Chaim, R., Marder-Jaeckel, R., Shen, J.Z.: Transparent YAG ceramics by surface softening of nanoparticles in spark plasma sintering. Mater. Sci. Eng., A 429, 74 2006CrossRefGoogle Scholar
11.Chaim, R., Margulis, M.: Densification maps for spark plasma sintering of nanocrystalline MgO ceramics. Mater. Sci. Eng., A 407, 180 2005CrossRefGoogle Scholar
12.Tokita, M.: Mechanism of spark plasma sintering and its application to ceramics. Nyu Seramikkusu 10, 43 1997Google Scholar
13.Mamedov, V.: Spark plasma sintering as advanced PM sintering method. Powder Metall. 45, 322 2002CrossRefGoogle Scholar
14.Reed, J.S.: Principles of Ceramic Processing 2nd ed. John Wiley & Sons Inc. New York 1995 p. 438.Google Scholar
15.Bernard-Granger, G., Guizard, C., Addad, A.: Sintering of an ultra pure α-alumina powder: I. Densification, grain growth and sintering path. J. Mater. Sci. 42, 6316 2007CrossRefGoogle Scholar
16.Bernard-Granger, G., Guizard, C.: Apparent activation energy for the densification of a commercially available granulated zirconia powder. J. Am. Ceram. Soc. 90, 1246 2007CrossRefGoogle Scholar
17.Bernard-Granger, G., San-Miguel, L., Guizard, C.: Sintering behavior and optical properties of yttria. J. Am. Ceram. Soc. 90, 2698 2007CrossRefGoogle Scholar
18.Brook, R.J., Gilbert, E., Hind, D., Vieira, J.M.: Sintering—Theory and Practice edited by D. Kolar, S. Pejovnik, and M.M. Ristic Elsevier Amsterdam 1982 p. 585Google Scholar
19.Coble, R.L.: Diffusion models for hot pressing with surface energy and pressure effects as driving forces. J. Appl. Phys. 41, 4798 1970CrossRefGoogle Scholar
20.McLean, D., Halle, K.F.: Structural Processes in Creep Spec. Rep. No. 70 The Iron and Steel Institute London 1961 19Google Scholar
21.Mukherjee, A.K., Bird, J.E., Dorn, J.E.: Experimental correlations for high-temperature creep. Trans ASM 62, 155 1969Google Scholar
22.Herring, C.: Diffusional viscosity of a polycrystalline solid. J. Appl. Phys. 21, 437 1950CrossRefGoogle Scholar
23.Bernard-Granger, G., Guizard, C.: Sintering of an ultra pure α-alumina powder: II. Mechanical, thermo-mechanical, optical properties and missile dome design. J. Mater. Sci. 2008 (submitted)CrossRefGoogle Scholar
24.Ashby, M.F., Verrall, R.A.: Diffusion accommodated flow and superplasticity. Acta Metall. 21, 149 1973CrossRefGoogle Scholar
25.Burton, B.: The relationship between dislocation recovery creep and vacancy diffusion creep. Philos. Mag. A 48, L9 1983CrossRefGoogle Scholar
26.Weertman, J.: Dislocation climb theory of steady-state creep. Trans. ASM 61, 681 1968Google Scholar
27.Weertman, J.: High temperature creep produced by dislocation motion. John E. Dorn Memorial SymposiumCleveland, OH1972Google Scholar
28.Messaoudi, K., Huntz, A.M., Lesage, B.: Diffusion and growth mechanisms in Al2O3 scales on kinetic Fe–Cr–Al alloys. Mater. Sci. Eng., A 247, 248 1998CrossRefGoogle Scholar
29.Clemens, D., Bongartz, K., Quaddakers, W.J., Nickel, H., Holzbrecher, H., Brecker, J.S.: Determination of lattice and grain-boundary diffusion coefficients in protective alumina scales on high temperature alloys using SEM, TEM and SIMS. Fresenius J. Anal. Chem. 353, 267 1995Google ScholarPubMed
30.Heuer, A.H.: Oxygen and aluminium diffusion in α-Al2O3. How much do we really understand? J. Eur. Ceram. Soc. 28, 1495 2008CrossRefGoogle Scholar
31.Prot, D., Le Gall, M., Lesage, B., Huntz, A.M., Monty, C.: Self-diffusion in α-Al2O3. IV. Oxygen grain-boundary self-diffusion in undoped and yttria-doped alumina polycrystals. Philos. Mag. A 73, 935 1996CrossRefGoogle Scholar
32.Nakagawa, T., Sakaguchi, I., Shibata, N., Matsunaga, K., Mizoguchi, T., Yamamoto, T.: Yttrium doping effect on oxygen grain-boundary diffusion in Al2O3. Acta Mater. 55, 6627 2007CrossRefGoogle Scholar
33.Panda, P.C., Raj, R., Morgan, P.E.D.: Superplastic deformation in fine-grained MgO.2Al2O3 spinel. J. Am. Ceram. Soc. 68, 522 1985CrossRefGoogle Scholar
34.Morita, K., Hiraga, K., Kim, B-N., Suzuki, T.S., Sakka, Y.: Strain softening and hardening during superplastic-like flow in a fine-grained MgAl2O4 spinel polycrystal. J. Am. Ceram. Soc. 87, 1102 2004CrossRefGoogle Scholar
35.Bernard-Granger, G., Benameur, N., Addad, A., Nygren, M., Guizard, C., Deville, S.: Spark plasma sintering of MgAl2O4. J. Am. Ceram. Soc. 2008 (submitted)Google Scholar