Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T14:24:15.607Z Has data issue: false hasContentIssue false

Deformation-mechanism dependent stretchability of nanocrystalline gold films on flexible substrates

Published online by Cambridge University Press:  05 September 2017

Xue-Mei Luo
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
Guang-Ping Zhang*
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
*
a) Address all correspondence to this author. e-mail: gpzhang@imr.ac.cn
Get access

Abstract

Stretchability of polyimide-supported nanocrystalline Au films with a thickness ranging from 930 to 20 nm was evaluated by uniaxial tensile testing. The results show that the fracture strain gradually decreased with decreasing the film thickness. Such degraded stretchability depends on plastic deformation mechanisms associated with the length scales. As the film thickness is larger than 90 nm, local thinning in the grown grains contributed to the high stretchability. Full dislocation behaviors including dislocation pileup in the 930 nm-thick film, the activation of Frank–Read dislocation source in the 170 nm-thick film and the grain boundary dislocation source in the 90 nm-thick film were dominated plastic deformation. As the film thickness is less than 40 nm, low stretchability of thin films resulted from intergranular fracture, and partial dislocation behaviors became prevailed. Evident grain growth happened in the films studied except for the 20 nm-thick film, which is expected to be involved in the stretchability of the nanocrystalline metal films on flexible substrates.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: George M. Pharr

References

REFERENCES

Rim, Y.S., Bae, S.H., Chen, H., De Marco, N., and Yang, Y.: Recent progress in materials and devices toward printable and flexible sensors. Adv. Mater. 28, 4415 (2016).CrossRefGoogle Scholar
Zhu, B., Wang, H., Leow, W.R., Cai, Y., Loh, X.J., Han, M.Y., and Chen, X.: Silk fibroin for flexible electronic devices. Adv. Mater. 28, 4250 (2016).CrossRefGoogle ScholarPubMed
Heremans, P., Tripathi, A.K., de Jamblinne de Meux, A., Smits, E.C., Hou, B., Pourtois, G., and Gelinck, G.H.: Mechanical and electronic properties of thin-film transistors on plastic, and their integration in flexible electronic applications. Adv. Mater. 28, 4266 (2016).CrossRefGoogle ScholarPubMed
Huang, H.B. and Spaepen, F.: Tensile testing of free-standing Cu, Ag and Al thin films and Ag/Cu multilayers. Acta Mater. 48, 3261 (2000).CrossRefGoogle Scholar
Alaca, B.E., Saif, M.T.A., and Sehitoglu, H.: On the interface debond at the edge of a thin film on a thick substrate. Acta Mater. 50, 1197 (2002).CrossRefGoogle Scholar
Pashley, D.W.: A study of the deformation and fracture of single-crystal gold films of high strength inside an electron microscope. Proc. R. Soc. London, Ser. A 255, 218 (1960).Google Scholar
Lu, N., Wang, X., Suo, Z., and Vlassak, J.: Metal films on polymer substrates stretched beyond 50%. Appl. Phys. Lett. 91, 221909 (2007).CrossRefGoogle Scholar
Lu, N., Suo, Z., and Vlassak, J.J.: The effect of film thickness on the failure strain of polymer-supported metal films. Acta Mater. 58, 1679 (2010).CrossRefGoogle Scholar
Sim, G.D., Won, S., Jin, C.Y., Park, I., Lee, S-B., and Vlassak, J.J.: Improving the stretchability of as-deposited Ag coatings on poly-ethylene-terephthalate substrates through use of an acrylic primer. J. Appl. Phys. 109, 073511 (2011).CrossRefGoogle Scholar
Li, T., Huang, Z.Y., Suo, Z., Lacour, S.P., and Wagner, S.: Stretchability of thin metal films on elastomer substrates. Appl. Phys. Lett. 85, 3435 (2004).CrossRefGoogle Scholar
Hommel, M. and Kraft, O.: Deformation behavior of thin copper films on deformable substrates. Acta Mater. 49, 3935 (2001).CrossRefGoogle Scholar
Lacour, S.P., Wagner, S., Huang, Z., and Suo, Z.: Stretchable gold conductors on elastomeric substrates. Appl. Phys. Lett. 82, 2404 (2003).CrossRefGoogle Scholar
Yu, D.Y.W.: The yield strength of thin copper films on Kapton. J. Appl. Phys. 95, 2991 (2004).CrossRefGoogle Scholar
Xiang, Y., Li, T., Suo, Z., and Vlassak, J.J.: High ductility of a metal film adherent on a polymer substrate. Appl. Phys. Lett. 87, 161910 (2005).CrossRefGoogle Scholar
Niu, R.M.: Thickness dependent critical strain in submicron Cu films adherent to polymer substrate. Appl. Phys. Lett. 90, 161907 (2007).CrossRefGoogle Scholar
Arafat, Y., Dutta, I., and Panat, R.: Super-stretchable metallic interconnects on polymer with a linear strain of up to 100%. Appl. Phys. Lett. 107, 081906 (2015).CrossRefGoogle Scholar
Sim, G.D., Won, S., and Lee, S.B.: Tensile and fatigue behaviors of printed Ag thin films on flexible substrates. Appl. Phys. Lett. 101, 191907 (2012).CrossRefGoogle Scholar
Gruber, P.A., Solenthaler, C., Arzt, E., and Spolenak, R.: Strong single-crystalline Au films tested by a new synchrotron technique. Acta Mater. 56, 1876 (2008).CrossRefGoogle Scholar
Oh, S.H., Legros, M., Kiener, D., Gruber, P., and Dehm, G.: In situ TEM straining of single crystal Au films on polyimide: Change of deformation mechanisms at the nanoscale. Acta Mater. 55, 5558 (2007).CrossRefGoogle Scholar
Luo, X.M., Zhu, X.F., and Zhang, G.P.: Nanotwin-assisted grain growth in nanocrystalline gold films under cyclic loading. Nat. Commun. 5, 3021 (2014).CrossRefGoogle ScholarPubMed
Lu, N., Wang, X., Suo, Z., and Vlassak, J.: Failure by simultaneous grain growth, strain localization, and interface debonding in metal films on polymer substrates. J. Mater. Res. 24, 379 (2009).CrossRefGoogle Scholar
Höppel, H.W., Zhou, Z.M., Mughrabi, H., and Valiev, R.Z.: Microstructural study of the parameters governing coarsening and cyclic softening in fatigued ultrafine-grained copper. Philos. Mag. A 82, 1781 (2002).CrossRefGoogle Scholar
Luo, X.M. and Zhang, G.P.: Grain boundary instability dependent fatigue damage behavior in nanoscale gold films on flexible substrates. Mater. Sci. Eng. A 702, 81 (2017).CrossRefGoogle Scholar
Kim, B.J., Shin, H.A.S., Lee, J-H., Yang, T.Y., Haas, T., Gruber, P., Choi, I-S., Kraft, O., and Joo, Y-C.: Effect of film thickness on the stretchability and fatigue resistance of Cu films on polymer substrates. J. Mater. Res. 29, 2827 (2014).CrossRefGoogle Scholar
Arzt, E.: Size effects in materials due to microstructural and dimensional constraints: A comparative review. Acta Mater. 46, 5611 (1998).CrossRefGoogle Scholar
Zhang, G.P. and Wang, Z.G.: Fatigue of small-scale metal materials: From micro- to nano-scale. In Multiscale Fatigue Crack Initiation and Propagation of Engineering Materials: Structural Integrity and Microstructural Worthiness, Sih, G.C., ed. (Springer, Dordrecht, the Netherlands, 2008); p. 275.CrossRefGoogle Scholar
Gianola, D.S., Van Petegem, S., Legros, M., Brandstetter, S., Van Swygenhoven, H., and Hemker, K.J.: Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films. Acta Mater. 54, 2253 (2006).CrossRefGoogle Scholar
Fan, G.J., Fu, L.F., Wang, Y.D., Ren, Y., Choo, H., Liaw, P.K., Wang, G.Y., and Browning, N.D.: Uniaxial tensile plastic deformation of a bulk nanocrystalline alloy studied by a high-energy X-ray diffraction technique. Appl. Phys. Lett. 89, 101918 (2006).CrossRefGoogle Scholar
Dehm, G., Legros, M., and Heiland, B.: In situ TEM straining experiments of Al films on polyimide using a novel FIB design for specimen preparation. J. Mater. Sci. 41, 4484 (2006).CrossRefGoogle Scholar
Meyers, M.A., Mishra, A., and Benson, D.J.: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427 (2006).CrossRefGoogle Scholar
Murr, L.E. and Wang, S.H.: Grain boundary deformation: The role of grain boundaries in yielding of polycrystalline metals and alloys. Res Mech. Lett. 1, 85 (1981).Google Scholar
Price, C.W. and Hirth, J.P.: A mechanism for the generation of screw dislocations from grain-boundary ledges. Mater. Sci. Eng. 9, 15 (1972).CrossRefGoogle Scholar
Zhang, G.P., Volkert, C.A., Schwaiger, R., Wellner, P., Arzt, E., and Kraft, O.: Length-scale-controlled fatigue mechanisms in thin copper films. Acta Mater. 54, 3127 (2006).CrossRefGoogle Scholar
Thompson, C.V.: The yield stress of polycrystalline thin films. J. Mater. Res. 8, 237 (1993).CrossRefGoogle Scholar
Zhu, Y.T., Liao, X.Z., Srinivasan, S.G., Zhao, Y.H., Baskes, M.I., Zhou, F., and Lavernia, E.J.: Nucleation and growth of deformation twins in nanocrystalline aluminum. Appl. Phys. Lett. 85, 5049 (2004).CrossRefGoogle Scholar
Zhu, Y.T., Liao, X.Z., Srinivasan, S.G., and Lavernia, E.J.: Nucleation of deformation twins in nanocrystalline face-centered-cubic metals processed by severe plastic deformation. J. Appl. Phys. 98, 034319 (2005).CrossRefGoogle Scholar
Zhu, Y.T., Liao, X.Z., and Wu, X.L.: Deformation twinning in nanocrystalline materials. Prog. Mater. Sci. 57, 1 (2012).CrossRefGoogle Scholar
Zhang, B., Xiao, T.Y., Luo, X.M., Zhu, X.F., and Zhang, G.P.: Enhancing fatigue cracking resistance of nanocrystalline Cu films on a flexible substrate. Mater. Sci. Eng., A 627, 61 (2015).CrossRefGoogle Scholar