Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T23:10:50.479Z Has data issue: false hasContentIssue false

Defect-dependent Elasticity: Nanoindentation as a Probe of Stress State

Published online by Cambridge University Press:  31 January 2011

K. F. Jarausch
Affiliation:
North Carolina State University, Raleigh, North Carolina 27695-753
J. D. Kiely
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185-1415
J. E. Houston
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185-1415
P. E. Russell
Affiliation:
North Carolina State University, Raleigh, North Carolina 27695-7531
Get access

Abstract

Using an interfacial force microscope, the measured elastic response of 100-nm-thick Au films was found to be strongly correlated with the films' stress state and thermal history. Large, reversible variations (2×) of indentation modulus were recorded as a function of applied stress. Low-temperature annealing caused permanent changes in the films' measured elastic properties. The measured elastic response was also found to vary in close proximity to grain boundaries in thin films and near surface steps on single-crystal surfaces. These results demonstrate a complex interdependence of stress state, defect structure, and elastic properties in thin metallic films.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Timoshenko, S.P. and Goodier, J.N., Theory of Elasticity, 3rd ed. (McGraw-Hill, New York, 1970).Google Scholar
2.Arzt, E., Acta Mater. 45, 5611 (1998).CrossRefGoogle Scholar
3.Suryanarayana, C., Mukhopadhyay, D., Patankar, S.N., and Froes, F.H., J. Mater. Res. 7, 2114 (1992).CrossRefGoogle Scholar
4.Shen, T.D., Koch, C.C., Tsui, T.Y., and Pharr, G.M., J. Mater. Res. 10, 2892 (1995).CrossRefGoogle Scholar
5.Sakai, S., Tanimoto, H., and Mizubayashi, H., Acta Mater. 47, 211 (1999).CrossRefGoogle Scholar
6.Lu, K., Zhang, H.Y., Zhong, Y., and Fecht, H.J., J. Mater. Res. 12, 923 (1997).CrossRefGoogle Scholar
7.Nieman, G.W., Weertman, J.R., and Siegel, R.W., J. Mater. Res. 6, 1012 (1991).CrossRefGoogle Scholar
8.Korn, D., Morsch, A., Birringer, R., Arnold, W., and Gleiter, H., J. Phys., Coll. C5, Suppl. No. 10, C5769 (1988).Google Scholar
9.Krstic, V., Erb, U., and Palumbo, G., Scr. Metall. Mater. 29, 1501 (1993).CrossRefGoogle Scholar
10.Flinn, P.A., J. Mater. Res. 6, 1498 (1991).CrossRefGoogle Scholar
11.Hwang, E.S. and Lee, J., J. Vac. Sci. Technol. B 16, 3015 (1998).CrossRefGoogle Scholar
12.Keller, R.M., Baker, S.P., and Arzt, E., J. Mater. Res. 13, 1307 (1998).CrossRefGoogle Scholar
13.Suryanarayanan, R., Frey, C.A., Sastry, S.M.L, Waller, B.E., and Buhro, W.E., J. Mater. Res. 11, 439 (1996).CrossRefGoogle Scholar
14.Besser, P.R., Marieb, T.N., Lee, Jin, Flinn, P.A., and Bravman, J.C., J. Mater. Res. 11, 184 (1996).CrossRefGoogle Scholar
15.Shen, Y-L., J. Appl. Phys. 84, 5525 (1998).CrossRefGoogle Scholar
16.Tangyunyong, P., Thomas, R.C., Houston, J.E., Michalske, T.A., Crooks, R.M., and Howard, A.J., Phys. Rev. Lett. 71, 3319 (1993).CrossRefGoogle Scholar
17.Jarausch, K.F., Kiely, J.D., Houston, J.E., and Russell, P.E., in Fundamentals of Nanoindentation and Nanotribology, edited by Moody, N.R., Gerberich, W.W., Burnham, N., and Baker, S.P. (Mater. Res. Soc. Symp. Proc. 522, Warrendale, PA, 1998), p. 119.Google Scholar
18.LaFontaine, W.R., Paszkiet, C.A., Korhonen, M.A., and Li, C-Y., J. Mater Res. 6, 2084 (1991).CrossRefGoogle Scholar
19.Suresh, S. and Giannakopoulos, A.E., Acta Mater. 46, 5755 (1998).CrossRefGoogle Scholar
20.Tsui, T.Y., Oliver, W.C., and Pharr, G.M., J. Mater. Res. 11, 752 (1996).CrossRefGoogle Scholar
21.Bolshakov, A., Oliver, W.C., and Pharr, G.M., J. Mater. Res. 11, 760 (1996).CrossRefGoogle Scholar
22.Joyce, S.A. and Houston, J.E., Rev. Sci. Instrum. 62, 710 (1991).CrossRefGoogle Scholar
23.Kiely, J.D., Hwang, R.Q., and Houston, J.E., Phys. Rev. Lett. 81, 4424 (1998).CrossRefGoogle Scholar
24.Thompson, C.V. and Carel, R., J. Mech. Phys. Solids 44, 657 (1996).CrossRefGoogle Scholar
25.Thomas, R.C., Houston, J.E., Michalske, T.A., and Crooks, R.M., Science 259, 1883 (1993).CrossRefGoogle Scholar
26.Bahr, D.F., Kramer, D.E., and Gerberich, W.W., Acta Mater. 46, 3605 (1998).CrossRefGoogle Scholar
27.Shenderova, O., Mewkill, J., Linehan, P., Brenner, D.W., Jarausch, K., and Russell, P.E., in Fundamentals of Nanoindentation and Nanotribology, edited by Moody, N.R., Gerberich, W.W., Burnham, N., and Baker, S.P. (Mater. Res. Soc. Symp. Proc. 522, Warrendale, PA, 1998), p. 233.Google Scholar
28.Kelchner, C.L. and Hamilton, J.C. (private communication).Google Scholar
29.Shenderova, O., Mewkill, J., and Brenner, D.W. (private communication).Google Scholar
30.Ruud, J.A., Jervis, T.R., and Spaepen, F., J. Appl Phys. 10, 4969 (1994).CrossRefGoogle Scholar
31.Adams, J.B., Wolfer, W.G., and Foiles, S.M., Phys. Rev. B 40, 9479 (1989).CrossRefGoogle Scholar
32.Heino, P., Häkkinen, H., and Kaski, K., Phys. Rev. B 58, 641 (1998).CrossRefGoogle Scholar
33.Alber, I., Bassani, J.L., Khantha, M., Vitek, V., and Wang, G.J., Philos. Trans. A 339, 555 (1992).Google Scholar