Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T10:52:16.377Z Has data issue: false hasContentIssue false

Cryo-transmission electron microscopy of Ag nanoparticles grown on an ionic liquid substrate

Published online by Cambridge University Press:  31 January 2011

Dalaver H. Anjum*
Affiliation:
Department of Structural Biology, University of Pittsburgh–School of Medicine, Pittsburgh, Pennsylvania 15260
James J. Finley
Affiliation:
PPG Glass Business and Discovery Center, Cheswick, Pennsylvania 15024
James F. Conway*
Affiliation:
Department of Structural Biology, University of Pittsburgh–School of Medicine, Pittsburgh, Pennsylvania 15260
*
a)Present address: Imaging & Characterization Facility, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
b)Address all correspondence to this author. e-mail: jxc100@pitt.edu
Get access

Abstract

We report a novel method of growing silver nanostructures by cathodic sputtering onto an ionic liquid (IL) and our visualization by transmission cryo-electron microscopy to avoid beam-induced motion of the nanoparticles. By freezing the IL suspension and controlling electron dose, we can assess properties of particle size, morphology, crystallinity, and aggregation in situ and at high detail. We observed round silver nanoparticles with a well-defined diameter of 7.0 ± 1.5 nm that are faceted with crystalline cubic structures and ˜80% of the particles have multiply twinned faults. We also applied cryo-electron tomography to investigate the structure of the nanoparticles and to directly visualize the IL wetting around them. In addition to particles, we observed nanorods that appear to have assembled from individual nanoparticles. Reexamination of the samples after 4–5 days from initial preparation showed significant changes in morphology, and potential mechanisms for this are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Nagabhushana, K.S., Bönnemann, H.Wet chemical synthesis of nanoparticlesNanotechnology in Catalysis edited by B. Zhou, S. Hermans, and G.A. Somorjai Vol. 1 (Kluwer Academic/Plenum Press, New York 2004)5182CrossRefGoogle Scholar
2.Niederberger, M., Garnweitner, G., Ba, J., Polleux, J., Pinna, N.Nonaqueous synthesis, assembly and formation mechanisms of metal oxide nanocrystals. Int. J. Nanotechnol. 4, 263 (2007)CrossRefGoogle Scholar
3.Singh, P., Katyal, A., Kalra, R., Chandra, R.Copper nanoparticles in ionic liquid: An easy and efficient catalyst for the coupling of thiazolidine-2,4-dione, aromatic aldehyde and ammonium acetate. Catal. Commun. 9, 1618 (2008)CrossRefGoogle Scholar
4.Dupont, J., Fonseca, G.S., Umpierre, A.P., Fichtner, P.F., Teixeira, S.R.Transition-metal nanoparticles in imidazolium ionic liquids: Recyclable catalysts for biphasic hydrogenation reactions. J. Am. Chem. Soc. 124, 4228 (2002)CrossRefGoogle ScholarPubMed
5.Singh, P., Kumarb, S., Katyala, A., Kalrac, R., Chandraa, R.A novel route for the synthesis of indium nanoparticles in ionic liquid. Mater. Lett. 62, 4164 (2008)CrossRefGoogle Scholar
6.Yan, Z-Y., Liu, Q., Zheng, W-J.Synthesis and characterization of titania powders from mixture of ionic liquid-water. Chin. J. Inorg. Chem. 22, 2055 (2006)Google Scholar
7.Zhai, Y., Gao, Y., Liu, F., Zhang, Q., Gao, G.Synthesis of nanostructured TiO2 particles in room temperature ionic liquid and its photocatalytic performance. Mater. Lett. 61, 5056 (2007)CrossRefGoogle Scholar
8.Chen, S., Liu, Y., Wu, G.Stabilized and size-tunable gold nanoparticles formed in a quaternary ammonium-based room-temperature ionic liquid under γ-irradiation. Nanotechnology 16, 2360 (2005)CrossRefGoogle Scholar
9.Li, N., Dong, B., Yuan, W., Gao, Y., Zheng, L., Huang, Y., Wang, S.ZrO2 nanoparticles synthesized using ionic liquid microemulsion. J. Dispersion Sci. Technol. 28, 1030 (2007)CrossRefGoogle Scholar
10.Zhao, X.L., Wang, C-X., Hao, X-P., Yang, J-X., Wu, Y-Z., Tian, Y-P., Tao, X-T., Jiang, M-H.Synthesis of PbS nanocubes using an ionic liquid as the solvent. Mater. Lett. 61, 4791 (2007)CrossRefGoogle Scholar
11.Jiang, Y., Zhu, Y.J.Microwave-assisted synthesis of nanocrystalline metal sulfides using an ionic liquid. Chem. Lett. 33, 1390 (2004)CrossRefGoogle Scholar
12.Hou, X., Zhou, F., Sun, Y., Liu, W.Ultrasound-assisted synthesis of dentritic ZnO nanostructure in ionic liquid. Mater. Lett. 61, 1789 (2007)CrossRefGoogle Scholar
13.El Abedin, S.Z., Borissenko, N., Endres, F.Electrodeposition of nanoscale silicon in a room temperature ionic liquid. Electrochem. Commun. 6, 510 (2004)CrossRefGoogle Scholar
14.Mattox, D.M.Handbook of Physical Vapor Deposition Processing (Noyes Publication, Park Ridge, NJ 1998)Google Scholar
15.Finley, J.J.Development of a multilayer thin-film solar control windshield. J. Vac. Sci. Technol., A 14, 739 (1996)CrossRefGoogle Scholar
16.Finley, J.J.Method of producing particles by physical vapor deposition in an ionic liquid. Inter. Pat. Appl. WO 2007/084558, A3 (2007)Google Scholar
17.Taylor, K., Glaeser, R.M.Electron microscopy of frozen-hydrated biological specimens. J. Ultrastruct. Res. 55, 448 (1976)CrossRefGoogle ScholarPubMed
18.Frank, J.Single-particle imaging of macromolecules by cryo-electron microscopy. Annu. Rev. Biophys. Biomol. Struct. 31, 303 (2002)CrossRefGoogle ScholarPubMed
19.Pouget, E.M., Bomans, P.H., Goos, J.A., Frederik, P.M., de With, G., Sommerdijk, N.A.The initial stages of template-controlled CaCO3 formation revealed by cryo-TEM. Science 323, 1455 (2009)CrossRefGoogle ScholarPubMed
20.Leng, B., Shao, Z., Bomans, P.H., Brylka, L.J., Sommerdijk, N.A., de With, G., Ming, W.Cryogenic electron tomography reveals the template effect of chitosan in biomimetic silicification. Chem. Commun. (Camb.) 46, 1703 (2010)CrossRefGoogle ScholarPubMed
21.Dey, A., de With, G., Sommerdijk, N.A.In situ techniques in biomimetic mineralization studies of calcium carbonate. Chem. Soc. Rev. 39, 397 (2010)CrossRefGoogle ScholarPubMed
22.Wang, Y., Neyman, A., Arkhangelsky, E., Gitis, V., Meshi, L., Weinstock, I.A.Self-assembly and structure of directly imaged inorganic-anion monolayers on a gold nanoparticle. J. Am. Chem. Soc. 131, 17412 (2009)CrossRefGoogle ScholarPubMed
23.He, Y., Li, Z., Simone, P.M., Lodge, T.P.Self-assembly of block copolymer micelles in an ionic liquid. J. Am. Chem. Soc. 128, 2745 (2006)CrossRefGoogle Scholar
24.Simone, P.M., Lodge, T.P.Micellization of PS-PMMA diblock copolymers in an ionic liquid. Macromol. Chem. Phys. 208, 339 (2007)CrossRefGoogle Scholar
25.Effantin, G., Boulanger, P., Neumann, E., Letellier, L., Conway, J.F.Bacteriophage T5 structure reveals similarities with HK97 and T4 suggesting evolutionary relationships. J. Mol. Biol. 361, 993 (2006)CrossRefGoogle ScholarPubMed
26.Abramoff, M.D., Magelhaes, P.J., Ram, S.J.Image processing with ImageJ. Biophotonics Int. 11, 36 (2004)Google Scholar
27.Kremer, J.R., Mastronarde, D.N., McIntosh, J.R.Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71 (1996)CrossRefGoogle ScholarPubMed
28.Mastronarde, D.N.Dual-axis tomography: An approach with alignment methods that preserve resolution. J. Struct. Biol. 120, 343 (1997)CrossRefGoogle ScholarPubMed
29.Smith, D.J., Marks, L.D.High resolution studies of small particles of gold and silver: II. Single crystals, lamellar twins and polyparticles. J. Cryst. Growth 54, 433 (1981)CrossRefGoogle Scholar
30.Marks, L.D., Smith, D.J.High resolution studies of small particles of gold and silver: I. Multiply-twinned particles. J. Cryst. Growth 54, 425 (1981)CrossRefGoogle Scholar
31.Gao, Y., Song, L., Jiang, P., Liu, P., Yan, L.F., Zhou, X.Q., Liu, Z.P., Wang, D.F., Yuan, J.X., Zhang, H.J., Zhao, Z.X., Dou, X.W., Zhou, X.Y., Wang, W.Y., Xie, G., Chen, S., Huan, H.Y., Li, J.Q.Silver nanowires with five-fold symmetric cross-section. J. Cryst. Growth 276, 606 (2004)CrossRefGoogle Scholar
32.Buffat, P.A.Electron diffraction and HRTEM studies of multiply-twinned structures and dynamical events in metal nanoparticles: Facts and artefacts. Mater. Chem. Phys. 81, 368 (2003)CrossRefGoogle Scholar
33.Ni, C., Hassan, P.A., Kaler, E.W.Structural characteristics and growth of pentagonal silver nanorods prepared by a surfactant method. Langmuir 21, 3334 (2005)CrossRefGoogle ScholarPubMed
34.Booy, F.P., Pawley, J.B.Cryo-crinkling: What happens to carbon films on copper grids at low temperature. Ultramicroscopy 48, 273 (1993)CrossRefGoogle ScholarPubMed
35.Williams, D.D., Carter, C.B.Transmission Electron Microscopy: A Textbook for Materials Science (Plenum Press, New York 1996)CrossRefGoogle Scholar
36.Grouchko, M., Popov, I., Uvarov, V., Magdassi, S., Kamyshny, A.Coalescence of silver nanoparticles at room temperature: Unusual crystal structure transformation and dendrite formation induced by self-assembly. Langmuir 25, 2501 (2009)CrossRefGoogle ScholarPubMed
37.Li, Z., Zhang, J., Du, J., Gao, H., Gao, Y., Mu, T., Han, B.Synthesis of LaCO3OH nanowires via a solvothermal process in the mixture of water and room-temperature ionic liquid. Mater. Lett. 59, 963 (2005)CrossRefGoogle Scholar
38.Kazeminezhad, I., Barnes, A.C., Holbrey, J.D., Seddon, K.R., Schwarzacher, W.Templated electrodeposition of silver nanowires in a nanoporous polycarbonate membrane from a nonaqueous ionic liquid electrolyte. Appl. Phys. A: Mater. Sci. Process. 86, 373 (2007)CrossRefGoogle Scholar
39.Jacob, D.S., Genish, I., Klein, L., Gedanken, A.Carbon coated shell structured copper and nickel-nanoparticles synthesized in ionic liquid. J. Phys. Chem. B 110, 17711 (2006)CrossRefGoogle ScholarPubMed