Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T14:42:38.138Z Has data issue: false hasContentIssue false

Conventional and Microcontact Impedance Studies of Mn–Zn Ferrite Ceramics

Published online by Cambridge University Press:  03 March 2011

Jong-Sook Lee
Affiliation:
Max Planck Institut für Festkörperforschung, D-70569 Stuttgart, Germany
Jürgen Fleig
Affiliation:
Max Planck Institut für Festkörperforschung, D-70569 Stuttgart, Germany
Joachim Maier
Affiliation:
Max Planck Institut für Festkörperforschung, D-70569 Stuttgart, Germany
Doh-Yeon Kim
Affiliation:
Center for Microstructure Science of Materials and School of Materials Science and Engineering, Seoul National University, Seoul 151-742, Korea
Get access

Abstract

Microcontact impedance spectroscopy in conjunction with conventional impedance techniques has been performed to elucidate microstructural and compositional inhomogeneities in polycrystalline Mn–Zn ferrites. Microcontact studies reveal the occurrence of oxygen stoichiometry gradients in these typically prepared ferrite ceramics together with a strong spatial resistance variation from boundary to boundary. This leads to a reinterpretation of the conventional impedance spectra of ferrites.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Alex, G.: Modern Ferrite Technology (Van Nostrand Reinhold, New York, 1990).Google Scholar
2Franken, P.E.C. and Stacy, W.T., J. Am. Ceram. Soc. 63, 315 (1980).CrossRefGoogle Scholar
3Paulus, M., Mater. Sci. Res. 3, 31 (1966).Google Scholar
4Pinet-Berger, J.J. and Laval, J.Y. in Ceramic Microstructure ′86, edited by Pask, J.A. and Evans, A.G. (Plenum Press, New York, 1987), p. 657.CrossRefGoogle Scholar
5Laval, J-Y., Cabanel, C., Berger, M-H. and Girard, P., J. Am. Ceram. Soc. 81, 1133 (1998).CrossRefGoogle Scholar
6Lin, I.N., Mishra, R.K. and Thomas, G., IEEE Trans. Magn. 22, 175 (1986).CrossRefGoogle Scholar
7Cheng, H.F., J. Appl. Phys. 56, 1831 (1984).CrossRefGoogle Scholar
8Byeon, S.C., Hong, K.S., Park, J.G. and Kang, W.N., J. Appl. Phys. 81, 7835 (1997).CrossRefGoogle Scholar
9Arcos, D., Vazquez, M., Valenzuela, R. and Vallet-Regi, M., J. Mater. Res. 14, 861 (1999).CrossRefGoogle Scholar
10Morineau, R. and Paulus, M., IEEE Trans. Magn. 11, 1312 (1975).CrossRefGoogle Scholar
11Lee, J-S. and Kim, D-Y., J. Mater. Res. 16, 2739 (2001).CrossRefGoogle Scholar
12Lee, J-S., Kim, D-Y., Fleig, J. and Maier, J.(unpublished).Google Scholar
13Fleig, J., Jamnik, J., Maier, J. and Ludvig, J., J. Electrochem. Soc. 143, 3635 (1996).CrossRefGoogle Scholar
14Fleig, J. and Maier, J., Solid State Ionics 85, 9 (1996).CrossRefGoogle Scholar
15Lee, J-S, Fleig, J., Maier, J., Chung, T-J, and Kim, D-Y. (unpublished).Google Scholar
16Rodewald, S., Fleig, J. and Maier, J., J. Eur. Ceram. Soc. 19, 797 (1999).CrossRefGoogle Scholar
17Rodewald, S., Fleig, J. and Maier, J., J. Am. Ceram. Soc. 84, 521 (2001).CrossRefGoogle Scholar
18Fleig, J.: Solid State Ionics 161, 279 (2003).CrossRefGoogle Scholar
19Holm, R.: Electric Contacts (Hugo Gerbers Förlag, Stockholm, 1946).Google Scholar
20Gillot, B., Benloucif, R.M. and Rousset, A., Phys. Status Solidi (a) 65, 205 (1981).CrossRefGoogle Scholar
21Yoo, H-I. and Tuller, H.L., J. Am. Ceram. Soc. 70, 388 (1987).CrossRefGoogle Scholar
22Chiang, Y. and Kingery, W.D. in Character of Grain Boundaries, Advances in Ceramics 6 edited by Yan, M.F. and Heuer, A.H. (Am. Ceram. Soc., Inc., Columbus, OH, 1983), p. 300.Google Scholar
23Inaba, H., Abe, T., Kitano, Y. and Shimomura, J., J. Solid State Chem. 121, 117 (1996).CrossRefGoogle Scholar
24Ozaki, Y., Shimotomai, M., Pithan, C. and Iwata, S., J. Jpn. Inst. Metals 63, 747 (1999).CrossRefGoogle Scholar
25Laval, J.Y. and Pinet, M.H., J. Phys. C1 47, 329 (1986).Google Scholar
26Fleig, J. and Maier, J., J. Eur. Ceram. Soc. 19, 693 (1999).CrossRefGoogle Scholar