Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T11:54:10.512Z Has data issue: false hasContentIssue false

Conceptual progress for explaining and predicting semiconductor properties

Published online by Cambridge University Press:  04 November 2011

Marvin L. Cohen*
Affiliation:
Department of Physics, University of California at Berkeley, Berkeley, California 94611; and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
*
a)Address all correspondence to this author. e-mail: mlcohen@berkeley.edu
Get access

Abstract

After some background discussion, this review will focus on some recent developments in the areas of theoretical studies of semiconductor electronic structure, photovoltaics, semiconducting boron nitride nanotubes, and the search for modified semiconductors and insulators with higher superconducting transition temperatures. The background discussion covers the evolution of studies of solids, which changed dramatically after the development of quantum theory. These conceptual changes resulted in methods for calculating properties of materials and theoretical frameworks for interpreting experimental measurements. In some cases, the theoretical approaches have been successful in predicting new materials and new properties. As stated above, a few examples will be given to illustrate the development of this field.

Type
Review
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Cohen, M.L. and Chelikowsky, J.R.: Electronic Structure and Optical Properties of Semiconductors, 2nd ed. (Springer, Berlin, 1989).CrossRefGoogle Scholar
2.Cohen, M.L. and Bergstresser, T.K.: Band structures and pseudopotential form factors for fourteen semiconductors of the diamond and zincblende structures. Phys. Rev. 141, 789 (1966).CrossRefGoogle Scholar
3.Cohen, M.L. and Heine, V.: The fitting of pseudopotentials to experimental data and their subsequent application, in Solid State Physics, Vol. 24, edited by Ehrenreich, H., Seitz, F., and Turnbull, D. (Academic Press, New York, 1970), p. 37.Google Scholar
4.Fermi, E.: Sullo spostamento per pressione dei termini elevati delle serie spettrali (on the pressure displacement of higher terms in spectral series). Nuovo Cim. 11, 157 (1934).CrossRefGoogle Scholar
5.Hellman, H.: A new approximation method in the problem of many electrons. J. Chem. Phys. 3, 61 (1935).CrossRefGoogle Scholar
6.Phillips, J.C. and Kleinman, L.: New method for calculating wave functions in crystals and molecules. Phys. Rev. 116, 287 (1959).CrossRefGoogle Scholar
7.Hamann, D.R., Schluter, M., and Chiang, C.: Norm-conserving pseudopotentials. Phys. Rev. Lett. 43, 1494 (1979).CrossRefGoogle Scholar
8.Troullier, N. and Martins, J.: Efficient pseudopotentials for planewave calculations. Phys. Rev. B 43, 1993 (1991).CrossRefGoogle ScholarPubMed
9.Vanderbilt, D.: Optimally smooth norm-conserving pseudopotentials. Phys. Rev. B 32, 8412 (1985).CrossRefGoogle ScholarPubMed
10.Kohn, W. and Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965).CrossRefGoogle Scholar
11.Ihm, J., Zunger, A., and Cohen, M.L.: Momentum-space formalism for the total energy of solids. J. Phys. Chem. 12, 4409 (1979).Google Scholar
12.Cohen, M.L.: Pseudopotentials and total energy calculations. Phys. Scr. T. 1, 5 (1982).CrossRefGoogle Scholar
13.Yin, M.T. and Cohen, M.L.: Microscopic theory of the phase transformation and lattice dynamics of Si. Phys. Rev. Lett. 45, 1004 (1980).CrossRefGoogle Scholar
14.Cohen, M.L., Schlüter, M., Chelikowsky, J.R., and Louie, S.G.: Self-consistent pseudopotential method for localized configurations: Molecules. Phys. Rev. B 12, 5575 (1975).CrossRefGoogle Scholar
15.Cohen, M.L.: Calculation of bulk moduli of diamond and zincblende solids. Phys. Rev. B 32, 7988 (1985).CrossRefGoogle ScholarPubMed
16.Cohen, M.L.: Theory of bulk moduli of hard solids. Mater. Sci. Eng., A 105(106), 11 (1988); in Proceedings of 3rd Conference on Science of Hard Materials (Elsevier, Oxford, 1988), p. 11.Google Scholar
17.Hybertsen, M.S. and Louie, S.G.: Electron correlation semiconductors and insulators: Band gaps and quasiparticle energies. Phys. Rev. B 34, 5390 (1986).CrossRefGoogle ScholarPubMed
18.Rohlfing, M. and Louie, S.G.: Electron-hole excitations and optical spectra from first principles. Phys. Rev. Lett. 81, 2312 (1998).CrossRefGoogle Scholar
19.Malone, B.D., Sau, J.D., and Cohen, M.L.: Ab initio study of the optical properties of Si-XII. Phys. Rev. B 78, 161202(R) (2008).CrossRefGoogle Scholar
20.Ruffell, S., Sears, K., Knights, A.P., Bradby, J.E., and Williams, J.S.: Experimental evidence for semiconducting behavior of Si-XII. Phys. Rev. B 83, 075316 (2011).CrossRefGoogle Scholar
21.Rubio, A., Corkill, J., and Cohen, M.L.: Theory of graphitic boron nitride nanotubes. Phys. Rev. B 49, 5081 (1994).CrossRefGoogle ScholarPubMed
22.Chopra, N.G., Luyken, R.J., Cherrey, K., Crespi, V.H., Cohen, M.L., Louie, S.G., and Zettl, A.: Boron nitride nanotubes. Science 269, 966 (1995).CrossRefGoogle ScholarPubMed
23.Smith, M.W., Jordan, K.C., Park, C., Kim, J-W., Lillehei, P.T., Crooks, R., and Harrison, J.S.: Very long single- and few-walled boron nitride nanotubes via the pressurized vapor/condenser method. Nanotechnology 20, 505604 (2009).CrossRefGoogle ScholarPubMed
24.Blasé, X., Rubio, A., Louie, S.G., and Cohen, M.L.: Stability and band gap constancy of boron nitride nanotubes. Europhys. Lett. 28, 335 (1994).CrossRefGoogle Scholar
25.Cumings, J. and Zettl, A.: Field emission and current-voltage properties. Solid State Commun. 129, 661 (2004).CrossRefGoogle Scholar
26.Khoo, K.H., Mazzoni, M.S.C., and Louie, S.G.: Tuning the electronic properties of boron nitride nanotubes with transverse electric fields: A giant dc Stark effect. Phys. Rev. B 69, 201401 (2004).CrossRefGoogle Scholar
27.Ishigami, M., Sau, J.D., Aloni, S., Cohen, M.L., and Zettl, A.: Observation of the giant Stark effect in boron-nitride nanotubes. Phys. Rev. Lett. 94, 056804 (2005).CrossRefGoogle ScholarPubMed
28.Cohen, M.L. and Zettl, A.: The physics of boron nitride nanotubes. Phys. Today 63, 34 (2010).CrossRefGoogle Scholar
29.Onnes, H.K.: The superconductivity of mercury. Comm. Phys. Lab. Univ. Leiden, 120b, 122b, 124c (1911).Google Scholar
30.Bardeen, J., Cooper, L.N., and Schrieffer, J.R.: Theory of superconductivity. Phys. Rev. 108, 1175 (1957).CrossRefGoogle Scholar
31.Bednorz, J.G. and Muller, K.A.: Possible high Tc superconductivity in Ba-La-Cu-O system. Z. Phys. B 64, 189 (1986).CrossRefGoogle Scholar
32.Gao, L., Xue, Y., Chen, F., Xiong, Z., Meng, R.L., Ramirez, D., and Chu, C.W.: Superconductivity up to 164 K in HgBa2Cam-1CumO2m+2+δ (m=a, 2, and 3) under quasihydrostatic pressures. Phys. Rev. B 50, 4260 (1994).CrossRefGoogle Scholar
33.Cohen, M.L.: Superconductivity in many-valley semiconductors and in semimetals. Phys. Rev. 134, A511 (1964).CrossRefGoogle Scholar
34.Cohen, M.L.: Superconductivity in low-carrier-density systems: Degenerate semiconductors, in Superconductivity, edited by Parks, R.D. (Marcel Dekker, Inc., New York, 1969), p. 615.Google Scholar
35.Schooley, J.F., Hosler, W.R., and Cohen, M.L.: Superconductivity in semiconducting SrTiO3. Phys. Rev. Lett. 12, 474 (1964).CrossRefGoogle Scholar
36.McMillan, W.L.: Transition temperature of strong-coupled superconductors. Phys. Rev. 167, 331 (1968).CrossRefGoogle Scholar
37.Allen, P.B. and Dynes, R.C.: Transition temperature of strong-coupled superconductors reanalyzed. Phys. Rev. B 12, 905 (1975).CrossRefGoogle Scholar
38.Eliashberg, G.M.: Interactions between electrons and lattice vibrations in a superconductor. Sov. Phys. JETP 11, 696 (1960).Google Scholar
39.Kresin, V.Z.: On the critical temperature for any strength of the electron-phonon coupling. Phys. Lett. A 122, 434 (1987).CrossRefGoogle Scholar
40.Bourne, L.C., Zettl, A., Barbee, T.W. III, and Cohen, M.L.: Complete absence of isotope effect in YBa2CuxO7: Consequences for phonon-mediated superconductivity. Phys. Rev. B 36, 3990 (1987).CrossRefGoogle ScholarPubMed
41.Chang, K.J., Dacorogna, M.M., Cohen, M.L., Mignot, J.M., Chouteau, G., and Martinez, G.: Superconductivity in high-pressure metallic phases of Si. Phys. Rev. Lett. 54, 2375 (1985).CrossRefGoogle ScholarPubMed
42.Giustino, F., Cohen, M.L., and Louie, S.G.: Electron-phonon interaction using Wannier functions. Phys. Rev. B 76, 165108 (2007).CrossRefGoogle Scholar
43.Moussa, J.E. and Cohen, M.L.: Constraints on Tc for superconductivity in heavily boron-doped diamond. Phys. Rev. B 77, 064518 (2008).CrossRefGoogle Scholar
44.Noffsinger, J., Giustino, F., Louie, S.G., and Cohen, M.L.: Origin of superconductivity in boron-doped silicon carbide from first principles. Phys. Rev. B 79, 104511 (2009).CrossRefGoogle Scholar
45.Moussa, J.E. and Cohen, M.L.: Two bounds on the maximum phonon-mediated superconducting transition temperature. Phys. Rev. B 74, 094520 (2006).CrossRefGoogle Scholar
46.Moussa, J.E. and Cohen, M.L.: Using molecular fragments to estimate electron-phonon coupling and possible superconductivity in covalent materials. Phys. Rev. B 78, 064502 (2008).CrossRefGoogle Scholar
47.Ekimov, E.A., Sidorov, V.A., Bauer, E.D., Mel’nik, N.N., Curro, N.J., Thompson, J.D., and Stishov, S.M.: Superconductivity in diamond. Nature 428, 542 (2004).CrossRefGoogle ScholarPubMed