Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T01:43:26.814Z Has data issue: false hasContentIssue false

A comparison of microtensile and microcompression methods for studying plastic properties of nanocrystalline electrodeposited nickel at different length scales

Published online by Cambridge University Press:  31 January 2011

L. Philippe*
Affiliation:
EMPA, Swiss Federal Laboratories for Materials Testing and Research, CH-3602 Thun, Switzerland
P. Schwaller
Affiliation:
EMPA, Swiss Federal Laboratories for Materials Testing and Research, CH-3602 Thun, Switzerland
G. Bürki
Affiliation:
EMPA, Swiss Federal Laboratories for Materials Testing and Research, CH-3602 Thun, Switzerland
J. Michler
Affiliation:
EMPA, Swiss Federal Laboratories for Materials Testing and Research, CH-3602 Thun, Switzerland
*
a)Address all correspondence to this author. e-mail: laetitia.philippe@empa.ch
Get access

Abstract

A comparison of microcompression and microtensile methods to study mechanical properties of electrodeposited nanocrystalline (nc) nickel has been performed. Microtensile tests that probe a volume of more than 2 × 106 μm3 show reasonable agreement with results from microcompression tests that probe much smaller volumes down to a few μm3. Differences between the two uniaxial techniques are discussed in terms of measurements errors, probed volume and surface effects, strain rate, and influence of stress state. Uniaxial solicitation in compression mode revealed several advantages for studying stress–strain properties.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Yang, Y., Imasogie, B.I., Allameh, S.M., Boyce, B., Lian, K., Lou, J.Soboyejo, W.O.: Mechanisms of fatigue in LIGA Ni MEMS thin films. Mater. Sci. Eng., A 444, 39 2007CrossRefGoogle Scholar
2Li, B.Chen, Q.: Solid micromechanical valves fabricated with in situ UV-LIGA assembled nickel. Sens. Actuators, A 126, 187 2006CrossRefGoogle Scholar
3Moody, N.R., Jungk, J.M., Kennedy, M.S., Prasad, S.V., Bahr, D.F.Gerberich, W.W.: Mechanical properties of wear tested LIGA nickel in Fundamentals of Nanoindentation and Nanotribology III,, edited by K.J. Wahl, N. Huber, A.B. Mann, D.F. Bahr, and Y-T. Cheng (Mater. Res. Soc. Symp. Proc. 841, Warrendale, PA, 2005), R7.8CrossRefGoogle Scholar
4Kumar, K.S., Van Swygenhoven, H.Suresh, S.: Mechanical behaviour of nanocrystalline metals and alloys. Acta Mater. 51, 5743 2003CrossRefGoogle Scholar
5Nix, W.D., Greer, J.R., Feng, G.Lilleodden, E.T.: Deformation at the nanometer and micrometer length scales: Effects of strain gradients and dislocation starvation. Thin Solid Films 515, 3152 2007CrossRefGoogle Scholar
6Mazza, E., Abel, S.Dual, J.: Experimental determination of mechanical properties of Ni and Ni–Fe microbars. Microsyst. Technol. 2, 197 1996CrossRefGoogle Scholar
7Haque, M.A.Saif, M.T.A.: In-situ tensile testing of nanoscale specimens in SEM and TEM. Exp. Mech. 42(1), 123128 2001Google Scholar
8Moser, B., Schwaiger, R.Dao, M.: Size effects on deformation and fracture on nanostructured materials in Nanostructured Coating, edited by A. Cavaleiro and J.Th.M. De Hosson, Nanostructure Science and Technology Series Springer New York 2006Google Scholar
9Greer, J.R., Oliver, W.C.Nix, W.D.: Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater. 53, 1821 2005CrossRefGoogle Scholar
10Uchic, M.D., Dimiduk, D.M., Florando, J.N.Nix, W.D.: Sample dimensions influence strength and crystal plasticity. Science 305, 986 2004CrossRefGoogle ScholarPubMed
11Espinosa, H.D., Panico, M., Berbenni, S.Schwartz, K.W.: Discrete dislocation dynamics simulations to interpret plasticity size and surface effects in freestanding fcc thin films. Int. J. Plast. 22, 2091 2006CrossRefGoogle Scholar
12Nix, W.D.Gao, H.: Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411 1998CrossRefGoogle Scholar
13Sneddon, I.N.: The relation between load and penetration in the axisymmetric Boussineq for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47 1965CrossRefGoogle Scholar
14Bei, H., Shim, S., Miller, M.K., Pharr, G.R.George, E.P.: Effects of focused-ion-beam milling on the nanomechanical behavior of a molybdenum-alloy single crystal. APL 91, 111915 2007Google Scholar
15Moser, B., Wasmer, K., Barbieri, L.Michler, J.: Strength and fracture of Si micropillars: A new scanning electron microscopy-based micro-compression test. J. Mater. Res. 22(4), 1004 2007CrossRefGoogle Scholar
16Zhang, H., Schuster, B.E., Wie, Q.Ramesh, K.T.: The design of accurate micro-compression experiments. Scripta Mater. 54, 181 2006CrossRefGoogle Scholar
17Mohamad, W.F., Ajar, A. AbouSaleh, A.N.: Effects of oxide layers and metals on photoelectric and optical properties of Schottky barrier photodetector. Renew. Ener. 31, 1493 2006CrossRefGoogle Scholar
18Asaro, R.J.Suresh, S.: Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins. Acta Mater. 53, 3369 2005CrossRefGoogle Scholar
19Tellkamp, V.L., Melmed, A.Lavernia, E.J.: Grain growth behavior of a nanostructured 5083 Al–Mg alloy. Metal. Mater. Trans. A 32, 2335 2001CrossRefGoogle Scholar
20Hanlon, T., Kwon, Y-N.Suresh, S.: Grain size effects on the fatigue response of nanocrystalline metals. Scripta Mater. 49, 675 2003CrossRefGoogle Scholar
21Cheng, S., Spencer, J.A.Milligan, W.W.: Strength and tension/compression asymmetry in nanostructured and ultrafine-grain metals. Acta Mater. 51, 4505 2003CrossRefGoogle Scholar
22Loubet, J.L., Bauer, M., Tonck, A., Bec, S.Gauthier-Manuel, B.: Mechanical Properties and Deformation Behaviour of Materials Having Ultra-fine Microstructures Kluwer Academic Publishers The Netherlands 1993 429–447Google Scholar
23Chudoba, T., Schwaller, P., Rabe, R., Breguet, J-M.Michler, J.: Comparison of nanoindentation results obtained with Berkovich and cube-corner indenters. Philos. Mag. 86(33–35), 5265 2006CrossRefGoogle Scholar