Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T10:49:52.083Z Has data issue: false hasContentIssue false

Comparative study of nanoindentation on melt-spun ribbon and bulk metallic glass with Ni60Nb37B3 composition

Published online by Cambridge University Press:  23 September 2013

Luis César Rodríguez Aliaga*
Affiliation:
Materials Science and Engineering Department, Federal University of São Carlos, São Carlos, São Paulo, Brazil
Jordina Fornell Beringues*
Affiliation:
Departament de Física, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain
Santiago Suriñach
Affiliation:
Departament de Física, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain
Maria Dolores Baró
Affiliation:
Departament de Física, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain
Claudio Shyinti Kiminami
Affiliation:
Materials Science and Engineering Department, Federal University of São Carlos, São Carlos, São Paulo, Brazil
Claudemiro Bolfarini
Affiliation:
Materials Science and Engineering Department, Federal University of São Carlos, São Carlos, São Paulo, Brazil
Walter José Botta
Affiliation:
Materials Science and Engineering Department, Federal University of São Carlos, São Carlos, São Paulo, Brazil
Jordi Sort Viñas
Affiliation:
Institució Catalana de Recerca i Estudis Avançats and Departament de Física, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain
*
a)Address all correspondence to these authors. e-mail: aliaga@ufscar.br
Get access

Abstract

This paper describes the mechanical properties under nanoindentation of a new glassy alloy with a nominal composition of Ni60Nb37B3, in the form of melt-spun ribbons and 1-mm-thick copper mold-cast sheets. The alloy composition was designed based on the synergy between the topological instability criterion and the difference in electronegativity among the elements. X-ray diffraction and scanning electron microscopy analyses confirmed that both ribbon and sheet samples possess totally amorphous structures with relatively high thermal stability (supercooled liquid region of about 60 K), as evaluated by differential scanning calorimetry (DSC). Nanoindentation tests revealed that the hardness of this alloy, about 15 GPa, is among the highest reported for metallic glasses. The elastic modulus of the cast sheet is higher and its hardness is similar to that of the ribbon. This correlates well with the different amounts of frozen-in free volume in both types of samples detected by DSC.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Miracle, D.B.: A structural model for metallic glasses. Nat. Mater. 3, 697 (2004).CrossRefGoogle ScholarPubMed
Sheng, H.W., Luo, W.K., Alamgir, F.M., Bai, J.M., and Ma, E.: Atomic packing and short-to-medium-range order in metallic glasses. Nature 439, 419 (2007).CrossRefGoogle Scholar
Chen, N., Martin, L., Luzguine-Luzgin, D.V., and Inoue, A.: Role of alloying additions in glass formation and properties of bulk metallic glasses. Materials 3, 5320 (2010).CrossRefGoogle ScholarPubMed
Wang, Z.T., Zeng, K.Y., and Li, Y.: The correlation between glass formation and hardness of the amorphous phase. Scr. Mater. 65, 747 (2011).CrossRefGoogle Scholar
Yan, M., Kohara, S., Wang, J.Q., Nogita, K., Schaffer, G.B., and Qian, M.: The influence of topological structure on bulk glass formation in Al-based metallic glasses. Scr. Mater. 65, 755 (2011).CrossRefGoogle Scholar
Spaepen, F.: A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 25, 407 (1977).CrossRefGoogle Scholar
Volkert, C.A., Donohue, A., and Spaepen, F.: Effect of sample size on deformation in amorphous metals. J. Appl. Phys. 103, 083539 (2008).CrossRefGoogle Scholar
Yoo, B.G., Park, K.W., Lee, J.C., Ramamurty, U., and Jang, J.: Role of free volume in strain softening of as-cast and annealed bulk metallic glass. J. Mater. Res. 24, 1405 (2009).CrossRefGoogle Scholar
Wright, W.J., Saha, R., and Nix, W.D.: Deformation mechanisms of the Zr, Ti, Ni, Cu, Be, bulk metallic glass. Mater. Trans. 42, 642 (2001).CrossRefGoogle Scholar
Schuh, C.A. and Nieh, T.G.: A survey of instrumented indentation studies on metallic glasses. J. Mater. Res. 19, 64 (2004).CrossRefGoogle Scholar
Schuh, C.A., Lund, A.C., and Nieh, T.G.: New regime of homogeneous flow in the deformation map of metallic glasses: Elevated temperature nanoindentation experiments and mechanistic modeling. Acta Mater. 52, 5879 (2004).CrossRefGoogle Scholar
Zhang, G.P., Wang, W., Zhang, B., Tan, J., and Liu, C.S.: On rate-dependent serrated flow behavior in amorphous metals during nanoindentation. Scr. Mater. 52, 1147 (2005).CrossRefGoogle Scholar
Jiang, W.H., Pinkerton, F.E., and Atzmon, M.: Mechanical behavior of shear bands and the effect of their relaxation in a rolled amorphous Al-based alloy. Acta Mater. 53, 3469 (2005).CrossRefGoogle Scholar
Wei, B.C., Zhang, T.H., Li, W.H., Sun, Y.F., Yu, Y., and Wang, Y.R.: Serrated plastic flow during nanoindentation in Nd-based bulk metallic glasses. Intermetallics 12, 1239 (2004).CrossRefGoogle Scholar
Li, W.H., Zhang, T.H., Xing, D.M., Wei, B.C., Wang, Y.R., and Dong, Y.D.: Instrumented indentation study of plastic deformation in bulk metallic glasses. J. Mater. Res. 21, 75 (2006).CrossRefGoogle Scholar
Kim, J.J., Choi, Y., Suresh, S., and Argon, A.S.: Nanocrystallization during nanoindentation of a bulk amorphous metal alloy at room temperature. Science 295, 654 (2002).CrossRefGoogle ScholarPubMed
Concustell, A., Sort, J., Alcala, G., Mato, S., Gebert, A., Eckert, J., and Baro, M.D.: Plastic deformation and mechanical softening of Pd40Cu30Ni10P20 bulk metallic glass during nanoindentation. J. Mater. Res. 20, 2719 (2005).CrossRefGoogle Scholar
Santos, F.S., Sort, J., Fornell, J., Baro, M.D., Suriñach, S., Bolfarini, C., Botta, W.J., and Kiminami, C.S.: Mechanical behavior under nanoindentation of a new Ni-based glassy alloy produced by melt-spinning and copper mold casting. J. Non-Cryst. Solids 356, 2251 (2010).CrossRefGoogle Scholar
Peng, W., Zhang, T., Liu, Y., Li, L., and We, B.: Critical serrated flow features during nanoindentation in La-based bulk metallic glasses. J. Uni. Sci. Technol. Beijing 14(1), 8 (2007).CrossRefGoogle Scholar
Van Steenberge, N., Sort, J., Concustell, A., Das, J., Scudino, S., Suriñach, S., Eckert, J., and Baró, M.D.: Dynamic softening and indentation size effect in a Zr-based bulk glass-forming alloy. Scr. Mater. 56, 605 (2007).CrossRefGoogle Scholar
Ashby, M.F. and Greer, A.L.: Metallic glasses as structural materials. Scr. Mater. 54, 321 (2006).CrossRefGoogle Scholar
Greer, A.L., Castellero, A., Madge, S.V., Walker, I.T., and Wilde, J.R.: Nanoindentation studies of shear banding in fully amorphous and partially devitrified metallic alloys. Mater. Sci. Eng., A 375377, 1182 (2004).CrossRefGoogle Scholar
Jang, J.I., Yoo, B.G., and Kim, J.Y.: Rate-dependent inhomogeneous-to-homogeneous transition of plastic flows during nanoindentation of bulk metallic glasses: Fact or artifact? Appl. Phys. Lett. 90, 211906 (2007).CrossRefGoogle Scholar
Li, W.H., Wei, B.C., Zhang, T.H., Xing, D.M., Zhang, L.C., and Wang, Y.R.: Study of serrated flow and plastic deformation in metallic glasses through instrumented indentation. Intermetallics 15, 706 (2007).CrossRefGoogle Scholar
Ramamurty, U., Jana, S., Kawamura, Y., and Chattopadhyay, K.: Hardness and plastic deformation in a bulk metallic glass. Acta Mater. 53, 705 (2005).CrossRefGoogle Scholar
Murali, P. and Ramamurty, U.: Embrittlement of a bulk metallic glass due to sub-Tg annealing. Acta Mater. 53, 1467 (2005).CrossRefGoogle Scholar
de Oliveira, M.F., Pereira, F.S., Bolfarini, C., Kiminami, C.S., and Botta, W.J.: Topological instability, average electronegativity difference and glass forming ability of amorphous alloys. Intermetallics 17, 183 (2009).CrossRefGoogle Scholar
Kiminami, C.S., Sá Lisboa, R.D., de Oliveira, M.F., Bolfarini, C., Botta, W.J.: Topological instability as a criterion for design and selection of easy glass-former compositions in Cu-Zr based systems. Mater. Trans., JIM 48, 1739 (2007).CrossRefGoogle Scholar
Santos, F.S., Kiminami, C.S., Bolfarini, C., de Oliveira, M.F., and Botta, W.J.: Evaluation of glass forming ability in the Ni–Nb–Zr alloy system by the topological instability (λ) criterion. J. Alloys Compd. 495, 316 (2010).CrossRefGoogle Scholar
Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
Kühn, U., Gebert, A., Gemming, T., Zinkevich, M., Wendrock, H., and Schultz, L.: Microstructure and thermal behavior of two-phase amorphous Ni-Nb-Y alloy. Scr. Mater. 25, 271 (2005).Google Scholar
Zhou, Z., Johnson, W.L., and Rhim, W.K.: Thermophysical properties of Ni–Nb and Ni–Nb–Sn bulk metallic glass-forming melts by containerless electrostatic levitation processing. J. Non-Cryst. Solids 337, 21 (2004).Google Scholar
Leyland, A. and Matthews, A.: On the significance of the H/E ratio in wear control: A nanocomposite coating approach to optimised tribological behavior. Wear 246, 1 (2000).CrossRefGoogle Scholar
Rebholz, C., Leyland, A., Schneider, J.M., Voevodin, A.A., and Matthews, A.: Structure, hardness and mechanical properties of magnetron sputtered titanium aluminum boride films. Surf. Coat. Technol. 120121, 412 (1999).CrossRefGoogle Scholar
Musil, J., Kunc, F., Zeman, H., and Poláková, H.: Relationships between hardness, Young's modulus and elastic recovery in hard nanocomposite coatings. Surf. Coat. Technol. 154, 304 (2002).CrossRefGoogle Scholar
Cheng, Y.T. and Cheng, C.M.: Relationships between hardness, elastic modulus, and the work of indentation. Appl. Phys. Lett. 73, 614 (1998).CrossRefGoogle Scholar
Pellicer, E., Pané, S., Sivaraman, K.M., Ergeneman, O., Suriñach, S., Baró, M.D., Nelson, B.J., and Sort, J.: Effects of the anion in glycine-containing electrolytes on the mechanical properties of electrodeposited Co-Ni films. Mater. Chem. Phys. 130, 1380 (2011).CrossRefGoogle Scholar
Zhu, Z., Zhang, H., Pan, D., Sun, W., and Hu, Z.: Fabrication of binary Ni-Nb bulk metallic glass with high strength and compressive plasticity. Adv. Eng. Mater. 8, 953 (2006).CrossRefGoogle Scholar
Choi-Yim, H., Xu, D., and Johnson, W.L.: Ni-based bulk metallic glass formation in the Ni–Nb–Sn and Ni–Nb–Sn–X (X = B, Fe, Cu) alloy systems. Appl. Phys. Lett. 82, 1030 (2003).CrossRefGoogle Scholar
Xu, D., Duan, G., Johnson, W.L., and Garland, C.: Formation and properties of new Ni-based amorphous alloys with critical casting thickness up to 5 mm. Acta Mater. 52, 3493 (2004).CrossRefGoogle Scholar
Fischer-Cripps, A.C.: Nanoindentation, 3rd ed. (Springer-Verlag Inc., New York, 2002).CrossRefGoogle Scholar
Fornell, J., Concustell, A., Suriñach, S., Li, W.H., Cuadrado, N., Gebert, A., Baró, M.D., and Sort, J.: Yielding and intrinsic plasticity of Ti–Zr–Ni–Cu–Be bulk metallic glass. Int. J. Plast. 25, 1540 (2009).CrossRefGoogle Scholar