Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T12:40:58.291Z Has data issue: false hasContentIssue false

Ceramic composites: A review of toughening mechanisms and demonstration of micropillar compression for interface property extraction

Published online by Cambridge University Press:  24 January 2018

Joey Kabel
Affiliation:
Department of Nuclear Engineering, University of California Berkeley, Berkeley, California 94709, USA
Peter Hosemann*
Affiliation:
Department of Nuclear Engineering, University of California Berkeley, Berkeley, California 94709, USA
Yevhen Zayachuk
Affiliation:
Department of Materials, University of Oxford, Oxford OX1 3PH, U.K.
David E. J. Armstrong
Affiliation:
Department of Materials, University of Oxford, Oxford OX1 3PH, U.K.
Takaaki Koyanagi
Affiliation:
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
Yutai Katoh
Affiliation:
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
Christian Deck
Affiliation:
Nuclear Technologies and Materials Division, General Atomics, 3550 General Atomics Court, San Diego, California 92121-1122, USA
*
a)Address all correspondence to this author. e-mail: peterh@berkeley.edu
Get access

Abstract

Ceramic fiber–matrix composites (CFMCs) are exciting materials for engineering applications in extreme environments. By integrating ceramic fibers within a ceramic matrix, CFMCs allow an intrinsically brittle material to exhibit sufficient structural toughness for use in gas turbines and nuclear reactors. Chemical stability under high temperature and irradiation coupled with high specific strength make these materials unique and increasingly popular in extreme settings. This paper first offers a review of the importance and growing body of research on fiber–matrix interfaces as they relate to composite toughening mechanisms. Second, micropillar compression is explored experimentally as a high-fidelity method for extracting interface properties compared with traditional fiber push-out testing. Three significant interface properties that govern composite toughening were extracted. For a 50-nm-pyrolytic carbon interface, the following were observed: a fracture energy release rate of ∼2.5 J/m2, an internal friction coefficient of 0.25 ± 0.04, and a debond shear strength of 266 ± 24 MPa. This research supports micromechanical evaluations as a unique bridge between theoretical physics models for microcrack propagation and empirically driven finite element models for bulk CFMCs.

Type
Invited Feature Paper
Copyright
Copyright © Materials Research Society 2018. This is a work of the U.S. Government and is not subject to copyright protection in the United States. 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Yanchun Zhou

This paper has been selected as an Invited Feature Paper.

References

REFERENCES

Phillips, D.C.: The fracture energy of carbon-fibre reinforced glass. J. Mater. Sci. 7, 11751191 (1972).Google Scholar
Prewo, K.M. and Brennan, J.J.: High-strength silicon carbide fibre-reinforced glass-matrix composites. J. Mater. Sci. 15, 463468 (1980).Google Scholar
Brennan, J.J. and Prewo, K.M.: Silicon carbide fibre reinforced glass-ceramic matrix composites exhibiting high strength and toughness. J. Mater. Sci. 17, 23712383 (1982).Google Scholar
Brennan, J.J., Tressler, R.E., Messing, G.L., Pantano, C.G., and Newnham, R.E.: Interfacial characterization of glass and glass-ceramic matrix/nicalon SiC fiber composites. In Tailoring Multiphase and Composite Ceramics (Springer, Boston, Massachusetts, 1986), pp. 549560.CrossRefGoogle Scholar
Sambell, R.A., Briggs, A., Phillips, D.C., and Bowen, D.H.: Carbon fibre composites with ceramic and glass matrices. Part 2: Continuous fibres. J. Mater. Sci. 7, 676681 (1972).Google Scholar
Yin, X.W., Cheng, L.F., Zhang, L.T., Travitzky, N., and Greil, P.: Fibre-reinforced multifunctional SiC matrix composite materials. Int. Mater. Rev. 62, 117172 (2016).Google Scholar
Yueh, K. and Terrani, K.A.: Silicon carbide composite for light water reactor fuel assembly applications. J. Nucl. Mater. 448, 380388 (2014).Google Scholar
Snead, L.L., Nozawa, T., Ferraris, M., Katoh, Y., Shinavski, R., and Sawan, M.: Silicon carbide composites as fusion power reactor structural materials. J. Nucl. Mater. 417, 330339 (2011).Google Scholar
Naslain, R. and Christin, F.: SiC-matrix composite materials for advanced jet engines. MRS Bull. 28, 654658 (2003).CrossRefGoogle Scholar
Yashiro, S., Ogi, K., and Oshita, M.: High-velocity impact damage behavior of plain-woven SiC/SiC composites after thermal loading. Composites, Part B Eng. 43, 13531362 (2012).Google Scholar
Katoh, Y., Snead, L.L., Szlufarska, I., and Weber, W.J.: Radiation effects in SiC for nuclear structural applications. Solid State Mater. Sci. 16, 143152 (2012).Google Scholar
Hertzberg, R.W., Vinci, R.P., and Hertzberg, J.L.: Deformation and Fracture Mechanics of Engineering Materials, 5th ed. (John Wiley & Sons, Inc., Hoboken, NJ, 1996).Google Scholar
Carter, B.C. and Norton, G.M.: Ceramic Materials (Springer, Boston, MA, 2007).Google Scholar
Evans, A.G. and Zok, F.W.: The physics and mechanics of fibre-reinforced brittle matrix composites. J. Mater. Sci. 29, 38573896 (1994).Google Scholar
Katoh, Y., Snead, L.L., Henager, C.H., Nozawa, T., Hinoki, T., Iveković, A., Novak, S., and Gonzalez De Vicente, S.M.: Current status and recent research achievements in SiC/SiC composites. J. Nucl. Mater. 455, 387397 (2014).Google Scholar
Carter, C.H., Davis, R.F., and Bentley, J.: Kinetics and mechanisms of high-temperature creep in silicon carbide: II, chemically vapor deposited. J. Am. Ceram. Soc. 67, 732740 (1984).Google Scholar
Terrani, K.A., Pint, B.A., Parish, C.M., Silva, C.M., Snead, L.L., and Katoh, Y.: Silicon carbide oxidation in steam up to 2 MPa. J. Am. Ceram. Soc. 97, 23312352 (2014).Google Scholar
Snead, L.L., Nozawa, T., Katoh, Y., Byun, T.S., Kondo, S., and Petti, D.A.: Handbook of SiC properties for fuel performance modeling. J. Nucl. Mater. 371, 329377 (2007).CrossRefGoogle Scholar
Hinoki, T., Lara-Curzio, E., and Snead, L.L.: Mechanical properties of high purity SiC fiber-reinforced CVI-SiC matrix composites. J. Mater. Res. 11, 391397 (2008).Google Scholar
Nozawa, T., Katoh, Y., and Snead, L.L.: The effect of neutron irradiation on the fiber/matrix interphase of silicon carbide composites. J. Nucl. Mater. 384, 195211 (2009).Google Scholar
Katoh, Y., Ozawa, K., Shih, C., Nozawa, T., Shinavski, R.J., Hasegawa, A., and Snead, L.L.: Continuous SiC fiber, CVI SiC matrix composites for nuclear applications: Properties and irradiation effects. J. Nucl. Mater. 448, 448476 (2014).CrossRefGoogle Scholar
Zinkle, S.J., Terrani, K.A., Gehin, J.C., Ott, L.J., and Snead, L.L.: Accident tolerant fuels for LWRs: A perspective. J. Nucl. Mater. 448, 374379 (2014).Google Scholar
Kerans, R.J. and Hay, R.S.: Interface design for oxidation-resistant ceramic composites. J. Am. Ceram. Soc. 85, 25992632 (2002).Google Scholar
Keller, K.A., Mah, T., Parthasarathy, T.A., and Cooke, C.M.: Fugitive interfacial carbon coatings for oxide/oxide composites. J. Am. Ceram. Soc. 83, 329336 (2000).Google Scholar
Wendorff, J., Janssen, R., and Claussen, N.: Platinum as a weak interphase for fiber-reinforced oxide-matrix composites. J. Am. Ceram. Soc. 40, 27382740 (1998).Google Scholar
Filipuzzi, L., Camus, G., and Naslain, R.: Oxidation mechanisms and kinetics of 1 D-SiC/C/SiC composite materials: I, an experimental approach. J. Am. Ceram. Soc. 47, 459466 (1994).Google Scholar
Evans, A.G., Zok, F.W., McMeeking, R.M., and Du, Z.Z.: Models of high-temperature, environmentally assisted embrittlement in ceramic-matrix composites. J. Am. Ceram. Soc. 79, 23452352 (1996).Google Scholar
Eckel, A.J., Cawley, J.D., and Parthasarathy, T.A.: Oxidation kinetics of a continuous carbon phase in a nonreactive matrix. J. Am. Ceram. Soc. 78, 972980 (1995).CrossRefGoogle Scholar
Parthasarathy, T.A., Folsom, C.A., and Zawada, L.P.: Combined effects of exposure to salt (NaCl) water and oxidation on the strength of uncoated and BN-coated Nicalon™ fibers. J. Am. Ceram. Soc. 86, 18121818 (1998).CrossRefGoogle Scholar
Naslain, R. and Langlais, F.: CVD-processing of ceramic-ceramic composite materials. In Tailoring Multiphase and Composite Ceramics (Springer, Boston, MA, 1986), pp. 145164.Google Scholar
Naslain, R., Dugne, O., Guette, A., Sevely, J., Brosse, C.R., Rocher, J-P., and Cotteret, J.: Boron nitride interphase in ceramic-matrix composites. J. Am. Ceram. Soc. 74, 24822488 (1991).CrossRefGoogle Scholar
Lamon, J.: Chemical vapor infiltrated SiC/SiC composites. In Handbook of Ceramic Composite (Springer, Boston, Massachusetts, 2005), pp. 5576.CrossRefGoogle Scholar
Khalifa, H.E., Deck, C.P., Gutierrez, O., Jacobsen, G.M., and Back, C.A.: Fabrication and characterization of joined silicon carbide cylindrical components for nuclear applications. J. Nucl. Mater. 457, 227240 (2015).Google Scholar
Deck, C.P., Jacobsen, G.M., Sheeder, J., Gutierrez, O., Zhang, J., Stone, J., Khalifa, H.E., and Back, C.A.: Characterization of SiC–SiC composites for accident tolerant fuel cladding. J. Nucl. Mater. 446, 667681 (2015).Google Scholar
Bertrand, S., Droillard, C., Pailler, R., Bourrat, X., and Naslain, R.: TEM structure of (PyC/SiC) multilayered interphases in SiC/SiC composites. J. Eur. Ceram. Soc. 20, 113 (2000).Google Scholar
Naslain, R.R., Pailler, R.J.F., and Lamon, J.L.: Single and multilayered interphases in SiC/SiC composites exposed to severe environmental conditions: An overview. Int. J. Appl. Ceram. Technol. 7, 263275 (2010).Google Scholar
Morscher, G.N., Bryant, D.R., and Tressler, R.E.: Environmental durability of BN-based interphases (for SiC(f)/SiC(m) composites) in H2O-containing atmospheres at intermediate temperatures. Ceram. Eng. Sci. Proc. 18, 525534 (1997).Google Scholar
Cofer, C.G. and Economy, J.: Oxidative and hydrolytic stability of boron nitride—A new approach to improving the oxidation resistance of carbonaceous structures. Carbon 33, 389395 (1995).CrossRefGoogle Scholar
Newsome, G., Snead, L.L., Hinoki, T., Katoh, Y., and Peters, D.: Evaluation of neutron irradiated silicon carbide and silicon carbide composites. J. Nucl. Mater. 371, 7689 (2007).Google Scholar
Lamon, J. and Bansal, N.: Ceramic Matrix Composites: Materials, Modeling and Technology (John Wiley & Sons, Hoboken, New Jersey, 2015).Google Scholar
Xia, Z. and Li, L.: Understanding interfaces and mechanical properties of ceramic matrix composites. In Advances in Ceramic Matrix Composites (Woodhead Publishing, Sawston, U.K., 2014), pp. 367385.Google Scholar
He, M-Y. and Hutchinson, J.W.: Crack deflection at an interface between dissimilar elastic materials. Int. J. Solids Struct. 31, 34433455 (1989).Google Scholar
Dundurs, J.: Edge-bonded dissimilar orthogonal elastic wedges under normal and shear loading. J. Appl. Mech. 36, 650652 (1969).Google Scholar
Ahn, B.K.: Interfacial Mechanics in Fiber-Reinforced Composites: Mechanics of Single and Multiple Cracks in CMCs (Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 1997), pp. 1160.Google Scholar
Braginsky, M. and Przybyla, C.P.: Simulation of crack propagation/deflection in ceramic matrix continuous fiber reinforced composites with weak interphase via the extended finite element method. Compos. Struct. 136, 538545 (2016).Google Scholar
Martinez, D. and Gupta, V.: Energy criterion for crack deflection an interface between two orthotropic media. J. Mech. Phys. Solids 42, 12471271 (1994).Google Scholar
Liang, Y. and Liechti, K.M.: Toughening mechanisms in mixed-mode interfacial fracture. Int. J. Solids Struct. 32, 957978 (1995).Google Scholar
Fleck, N.A.: Crack path selection in a brittle adhesive layer. Int. J. Solids Struct. 27, 16831703 (1991).Google Scholar
Isaksson, P. and Stahle, P.: Mode II crack paths under compression in brittle solids—A theory and experimental comparison. Int. J. Solids Struct. 39, 22812297 (2002).Google Scholar
Cedric, Z. and Hutchinson, J.W.: Mode II fracture toughness of a brittle adhesive layer. Int. J. Solids Struct. 31, 11331148 (1994).Google Scholar
Blackman, B.R.K.: Mode II fracture testing of composites: A new look at an old problem. Eng. Fract. Mech. 73, 24432455 (2006).Google Scholar
Handin, J.: On the Coulomb–Mohr failure criterion. J. Geophys. Res. 74, 53435348 (1969).Google Scholar
He, M.Y., Anthony, A.G., and Hutchinson, J.W.: Crack deflection at an interface between dissimilar elastic materials: Role of residual stresses. Int. J. Solids Struct. 31, 34433455 (1994).CrossRefGoogle Scholar
Ozawa, K., Hinoki, T., Nozawa, T., Katoh, Y., Maki, Y., Kondo, S., Ikeda, S., and Kohyama, A.: Evaluation of fiber/matrix interfacial strength of neutron irradiated SiC/SiC composites using hysteresis loop analysis of tensile test. Mater. Trans. 47, 207210 (2006).Google Scholar
Hsueh, C.H., Rebillat, F., Lamon, J., and Lara-Curzio, E.: Analyses of fiber push-out tests performed on nicalon/SiC composites with tailored interfaces. Composites, Part B Eng. 5, 13871401 (2008).Google Scholar
Rebillat, F., Lamon, J., Naslain, R., Lara-Curzio, E., Ferber, M.K., and Besmann, T.M.: Interfacial bond strength in SiC/C/SiC composite materials, as studied by single-fiber push-out tests. J. Am. Ceram. Soc. 81, 965978 (1998).Google Scholar
Hsueh, C.H.: Interfacial debonding and fibre pull-out stresses of fibre-reinforced composites. Mater. Sci. Eng., A 123, 111 (1990).Google Scholar
Shetty, D.K.: Shear-lag analysis of fiber push-out (indentation) tests for estimating interfacial friction stress in ceramic matrix composites. J. Am. Ceram. Soc. 71, C107C109 (1988).CrossRefGoogle Scholar
Lawrence, P.: Some theoretical consideration of fibre pull-out from an elastic matrix. J. Mat. Sci. 7, 16 (1972).Google Scholar
Rebillat, F., Lamon, J., and Guette, A.: The concept of a strong interface applied to SiC/SiC composites with a BN interphase. Acta Mater. 48, 46094618 (2000).Google Scholar
Mueller, W.M., Moosburger-Will, J., Sause, M.G.R., and Horn, S.: Microscopic analysis of single-fiber push-out tests on ceramic matrix composites performed with Berkovich and flat-end indenter and evaluation of interfacial fracture toughness. J. Eur. Ceram. Soc. 33, 441451 (2013).CrossRefGoogle Scholar
Shin, C., Jin, H.H., Kim, W.J., and Park, J.Y.: Mechanical properties and deformation of cubic silicon carbide micropillars in compression at room temperature. J. Am. Ceram. Soc. 95, 29442950 (2012).Google Scholar
Jaya, B.N. and Jayaram, V.: Fracture testing at small-length scales: From plasticity in Si to brittleness in Pt. J. Mater. Sci. 68, 94108 (2016).Google Scholar
Gerberich, W., Michler, J., Mook, W., Ghisleni, R., Östlund, F., Stauffer, D., and Ballarini, R.: Scale effects for strength, ductility, and toughness in ‘brittle’ materials. J. Mater. Res. 24, 898906 (2009).Google Scholar
Dohr, J., Armstrong, D.E.J., Tarleton, E., Couvant, T., and Lozano-Perez, S.: The influence of surface oxides on the mechanical response of oxidized grain boundaries. Thin Solid Films 632, 1722 (2017).Google Scholar
Armstrong, D.E.J., Wilkinson, A.J., and Roberts, S.G.: Micro-mechanical measurements of fracture toughness of bismuth embrittled copper grain boundaries. Philos. Mag. Lett. 91, 394400 (2011).Google Scholar
Hosemann, P.: Small-scale mechanical testing on nuclear materials: Bridging the experimental length-scale gap. Scr. Mater. 143, 161168 (2018).Google Scholar
Shih, C., Katoh, Y., Leonard, K.J., Bei, H., and Lara-Curzio, E.: Determination of interfacial mechanical properties of ceramic composites by the compression of micro-pillar test specimens. J. Mater. Sci. 48, 52195224 (2013).Google Scholar
Kabel, J., Yang, Y., Balooch, M., Howard, C., Koyanagi, T., Terrani, K.A., Katoh, Y., and Hosemann, P.: Micro-mechanical evaluation of SiC–SiC composite interphase properties and debond mechanisms. Composites, Part B Eng. 131, 118 (2017).Google Scholar
Tattersall, H.G. and Tappin, G.: The work of fracture and its measurement in metals, ceramics and other materials. J. Mater. Sci. 1, 296301 (1966).Google Scholar
Anaka, A., Shibayama, T., Takeda, S., and Yokoyama, M.: Recent progress of Hi-nicalon type S development. Ceram. Eng. Sci. Proc. 24, 217223 (2003).Google Scholar
Ichikawa, H.: Development of high performance SiC fibers derived from polycarbosilian using electron beam irradiation curing-a review. J. Ceram. Soc. 114, 455460 (2006).CrossRefGoogle Scholar
Sauder, C. and Lamon, J.: Tensile creep behavior of SiC-based fibers with a low oxygen content. J. Am. Ceram. Soc. 90, 11461156 (2007).Google Scholar
Sauder, C., Brusson, A., and Lamon, J.: Influence of interface characteristics on the mechanical properties of Hi-nicalon type-S or tyranno-SA3 fiber-reinforced SiC/SiC minicomposites. Int. J. Appl. Ceram. Technol. 7, 291303 (2010).Google Scholar
Katoh, Y., Snead, L.L., Nozawa, T., Kondo, S., and Busby, J.T.: Thermophysical and mechanical properties of near-stoichiometric fiber CVI SiC/SiC composites after neutron irradiation at elevated temperatures. J. Nucl. Mater. 403, 4861 (2010).Google Scholar
Karthik, C., Kane, J., Butt, D.P., Windes, W.E., and Ubic, R.: In situ transmission electron microscopy of electron-beam induced damage process in nuclear grade graphite. J. Nucl. Mater. 412, 321326 (2011).Google Scholar
Karthik, C., Kane, J., Butt, D.P., Windes, W.E., and Ubic, R.: Neutron irradiation induced microstructural changes in NBG-18 and IG-110 nuclear graphites. Carbon 86, 124131 (2015).Google Scholar
Takeuchi, M., Muto, S., Tanabe, T., Kurata, H., and Hojou, K.: Structural change in graphite under electron irradiation at low temperatures. J. Nucl. Mater. 271–272, 280284 (1999).Google Scholar
Snead, L.L., Burchell, T.D., and Katoh, Y.: Swelling of nuclear graphite and high quality carbon fiber composite under very high irradiation temperature. J. Nucl. Mater. 381, 5561 (2008).Google Scholar
Liu, Z., Zhang, S.M., Yang, J.R., YangLiu, J.Z., Yang, Y.L., and Zheng, Q.S.: Interlayer shear strength of single crystalline graphite. Acta Mech. Sin. 28, 978982 (2012).CrossRefGoogle Scholar
Sakai, M. and Bradt, R.C.: Fracture toughness anisotropy of a pyrolytic carbon. J. Mater. Sci. 21, 14911501 (1986).Google Scholar
Kerans, R.J., Parthasarathy, T.A., Rebillat, F., and Lamon, J.: Interface properties in high-strength nicalon/C/SiC composites, as determined by rough surface analysis of fiber push-out tests. J. Am. Ceram. Soc. 81, 18811887 (1998).Google Scholar
Ritchie, R.O.: Fatigue and fracture of pyrolytic carbon: A damage-tolerant approach to structural integrity and life prediction in ceramic heart valve protheses. J. Heart. Valve Dis. 5, S9S31 (1996).Google Scholar
Katoh, Y., Snead, L.L., Henager, C.H., Hasegawa, A., Kohyama, A., Riccardi, B., and Hegeman, H.: Current status and critical issues for development of SiC composites for fusion applications. J. Nucl. Mater. 367–370, 659671 (2007).Google Scholar
Yang, W., Kohyama, A., Noda, T., Katoh, Y., Hinoki, T., Araki, H., and Yu, J.: Interfacial characterization of CVI-SiC/SiC composites. J. Nucl. Mater. 311, 10881092 (2002).Google Scholar
Hinoki, T.: Effect of fiber coating on interfacial shear strength of SiC/SiC by nano-indentation technique. J. Nucl. Mater. 263, 15671571 (1998).Google Scholar
Bertrand, S., Pailler, R., and Lamon, J.: Influence of strong fiber/coating interfaces on the mechanical behavior and lifetie of Hi-nicalon/(PyC/SiC)n/SiC minicomposites. J. Am. Ceram. Soc. 84, 787794 (2001).Google Scholar