Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T15:07:22.231Z Has data issue: false hasContentIssue false

Cellulose micro/nanocrystals reinforced polyurethane

Published online by Cambridge University Press:  01 April 2006

N.E. Marcovich
Affiliation:
Instituto de Investigaciones en Ciencia y Technologia de Materiales (INTEMA), Chemical Engineering Department, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
M.L. Auad
Affiliation:
University of Southern California, Gill Foundation Composites Center, Los Angeles, California 90089-0241
N.E. Bellesi
Affiliation:
Instituto de Investigaciones en Ciencia y Technologia de Materiales (INTEMA), Chemical Engineering Department, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
S.R. Nutt
Affiliation:
University of Southern California, Gill Foundation Composites Center, Los Angeles, California 90089-0241
M.I. Aranguren*
Affiliation:
Instituto de Investigaciones en Ciencia y Technologia de Materiales (INTEMA), Chemical Engineering Department, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
*
a) Address all correspondence to this author. e-mail: marangur@fi.mdp.edu.ar
Get access

Abstract

Nano- and micron-sized cellulose crystals were prepared and utilized as reinforcements for polyurethane composites. The cellulose crystals obtained from microcrystalline cellulose (MCC) were incorporated into a polar organic solvent, dimethylformamide (DMF), and ultrasonicated to obtain a stable suspension. The suspension was an effective means for incorporating the cellulose crystals into the polyol-isocyanate mixture, utilized to produce polyurethane composite films. The use of DMF presents an interesting alternative for the use of cellulose crystals as reinforcement of a broad new range of polymers. Moreover, the rheology of the uncured liquid suspensions was investigated, and analysis of the results indicated the formation of a filler structure pervading the liquid suspension. Besides, films were prepared by casting and thermal curing of the stable suspensions. Thermomechanical and mechanical testing of the films were carried out to analyze the performance of the composites. The results indicated that a strong filler-matrix interaction was developed during curing as a result of a chemical reaction occurring between the crystals and the isocyanate component.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Eichhorn, S.J., Baillie, C.A., Zafeiropoulos, N., Mwaikambo, L.Y., Ansell, M.P., Dufresne, A., Entwistle, K.M., Herrera-Franco, P.J., Escamilla, G.C., Groom, L., Hughes, M., Hill, C., Rials, T.G., Wild, P.M.: Review current international research into cellulosic fibres and composites. J. Mater. Sci. 36, 2107 (2001).CrossRefGoogle Scholar
2.Eichhorn, S.J., Young, R.J.: The Young's modulus of a microcrystalline cellulose. Cellulose 8, 197 (2001).CrossRefGoogle Scholar
3.Zadorecki, P., Michell, A.: Future prospects for wood cellulose as reinforcement in organic polymer composites. Polym. Compos. 10, 69 (1989).CrossRefGoogle Scholar
4.Boldizar, A., Klason, C., Kubat, J., Näslund, P., Saha, P.: Prehydrolyzed cellulose as reinforcing filler for thermoplastics. Int. J. Polym. Mater. 11, 229 (1987).CrossRefGoogle Scholar
5.Woodhams, R.T., Thomas, G., Rogers, D.K.: Wood fibers as reinforcing fillers for polyolefins. Polym. Eng. Sci. 24, 1166 (1984).CrossRefGoogle Scholar
6.Goussé, C., Chanzy, H., Cerrada, M.L., Fleury, E.: Surface silylation of cellulose microfibrils: preparation and rheological properties. Polymer 45, 1569 (2004).CrossRefGoogle Scholar
7.Goldstein, I.S.Cellulose: Nature and applications, in Enclyclopedia of Materials Science and Engineering, Vol. 1, edited by Bever, M.B. (MIT Press, Cambridge, MA, 1986), p. 564.Google Scholar
8.Marchessault, R.H., Sundarrjan, P.R. in Cellulose. The Polysaccharides, Vol. 2, edited by Aspinall, G.O. (Academic Press, New York, 1983), pp. 1195.CrossRefGoogle Scholar
9.O’Sullivan, A.C.: Cellulose: The structure slowly unravels. Cellulose 4, 173 (1997).CrossRefGoogle Scholar
10.French, A.D. Structure and biosynthesis of cellulose. Part I: Structure, in Discoveries in Plant Biology, Vol. 3, edited by Yang, S.F. and Kung, S.D. (World Scientific, Singapore, 2000), pp. 163197.CrossRefGoogle Scholar
11.Ebeling, T., Paillet, M., Borsali, R., Diat, O., Dufresne, A., Cavaillé, J-Y., Chanzy, H.: Shear-induced orientation phenomena in suspensions of cellulose microcrystals, revealed by small angle x-ray scattering. Langmuir 15(19), 6123 (1999).CrossRefGoogle Scholar
12.Heux, L., Chauve, G., Bonini, C.: Nonflocculating and chiral -nematic self-ordering of cellulose microcrystals suspensions in nonpolar solvents. Langmuir 16, 8210 (2000).CrossRefGoogle Scholar
13.Dufresne, A., Dupeyre, D., Vignon, M.R.: Cellulose microfibrils from potato tuber cells: Processing and characterization of starch cellulose microfibril composites. J. Appl. Polym. Sci. 76, 2080 (2000).3.0.CO;2-U>CrossRefGoogle Scholar
14.Dong, X.M., Revol, J-F., Gray, D.G.: Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5, 19 (1998).CrossRefGoogle Scholar
15.Bercea, M., Navard, P.: Shear dynamics of aqueous suspensions of cellulose whiskers. Macromolecules 33, 6011 (2000).CrossRefGoogle Scholar
16.Dong, X.M., Kimura, T., Revol, J-F., Gray, D.G.: Effects of ionic strength on the isotropic-chiral nematic phase transition of suspensions of cellulose crystallites. Langmuir 12, 2076 (1996).CrossRefGoogle Scholar
17.Dinand, E., Chanzy, H., Vignon, R.M.: Suspensions of cellulose microfibrils from sugar beet pulp. Food Hydrocolloids 13, 275 (1999).CrossRefGoogle Scholar
18.Favier, V., Canova, G.R., Shrivastava, S.C., Cavaillé, J.Y.: Mechanical percolation in cellulose whiskers nanocomposites. Polym. Eng. Sci. 37, 1732 (1997).CrossRefGoogle Scholar
19.Hajji, P., Cavaillé, J.Y., Favier, V., Gauthier, C., Vigier, G.: Tensile behavior of nanocomposites from latex and cellulose whiskers. Polym. Compos. 14, 612 (1996).CrossRefGoogle Scholar
20.Favier, V., Chanzy, H., Cavaillé, J.Y.: Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28, 6365 (1995).CrossRefGoogle Scholar
21.Dufresne, A., Cavaillé, J-I., Helbert, W.: Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part II: Effect of processing and modelling. Polym. Compos. 19(2), 198 (1997).CrossRefGoogle Scholar
22.Dufresne, A., Vignon, M.R.: Improvement of starch film performances using cellulose microfibrils. Macromolecules 31, 2693 (1998).CrossRefGoogle Scholar
23.Samir, M.A.S. Azizi, Chazeau, L., Alloin, F., Cavaillé, J-Y., Dufresne, A., Sánchez, J-Y.: POE-based nanocomposite polymer electrolytes reinforced with cellulose whiskers. Electrochim. Acta 50, 3897 (2005).CrossRefGoogle Scholar
24.Samir, M.A.S. Azizi, Alloin, F., Sanchez, J-Y., Dufresne, A.: Cellulose nanocrystals reinforced poly(oxyethylene). Polymer 45, 4149 (2004).CrossRefGoogle Scholar
25.Samir, M.A.S. Azizi, Mateos, A. Montero, Alloin, F., Sanchez, J-Y., Dufresne, A.: Plasticized nanocomposite polymer electrolytes based on poly(oxyethylene) and cellulose whiskers. Electrochim. Acta 49, 4667 (2004).CrossRefGoogle Scholar
26.Goussé, C., Chanzy, H., Excoffier, G., Soubeyrand, L., Fleury, E.: Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents. Polymer 43, 2645 (2002).CrossRefGoogle Scholar
27.Urbanski, J. In Handbook of Analysis of Synthetic Polymers and Plastics, edited by Urbanski, J., Czerwinski, W., Janicka, K., Majewska, F., and Zowall, H. (John Wiley & Sons, Poland, 1977), Chap. 1, pp. 4853.Google Scholar
28.Young, R.J., Lovell, P.A.Introduction to Polymers, 2nd ed. (Chapman & Hall, London, UK, 1991).CrossRefGoogle Scholar
29.Marcovich, N.E., Reboredo, M.M., Aranguren, M.I.: Modified woodflour as thermoset fillers. II Thermal degradation of woodflour and composites. Termochimica Acta 372, 45 (2001).CrossRefGoogle Scholar
30.Ardizzone, S., Dioguaardi, F.S., Mussini, T., Mussini, P.R., Rondinini, S., Verceli, B., Vertova, A.: Microcrystalline cellulose powders: Structure, surface features and water sorption capability. Cellulose 6, 59 (1991).Google Scholar
31.Fink, H.P., Walenta, E., Kunze, J.: The structure of natural cellulose fibers—Part 2. The supermolecular structure of bast fibers and their changes by mercerization as revealed by x-ray diffraction and 13C-NMR spectroscopy. Papier 53, 534 (1999).Google Scholar
32.Anglés, M.N., Dufresne, A.: Platicized starch/tunicin whiskers nanocomposites. 1. Structural analysis. Macromolecules 33, 8344 (2000).CrossRefGoogle Scholar
33.Samir, M.A.S. Azizi, Alloin, F., Sanchez, J-Y., Kissi, N. El, Dufresne, A.: Preparation of cellulose whiskers reinforced nanocomposites from an organic medium suspension. Macromolecules 37, 1386 (2004).CrossRefGoogle Scholar
34.Marcovich, N.E., Reboredo, M.M., Kenny, J.M., Aranguren, M.I.: Rheology of particle suspensions in viscoelastic media. Wood flour–polypropylene melt. Rheologica Acta 43, 293 (2004).CrossRefGoogle Scholar
35.Aranguren, M.I., Mora, E., DeGroot, J.V. Jr. Macosko, C.W.: Effect of reinforcing fillers on the rheology of polymer melts. J. Rheol. 36, 1165 (1992).CrossRefGoogle Scholar
36.Guth, E.: Theory of filler reinforcement. J. Appl. Phys. 16, 20 (1945).CrossRefGoogle Scholar
37.Krieger, I.M.: Rheology of monodisperse latices. Adv. Colloid Interface Sci. 3, 111 (1972).CrossRefGoogle Scholar
38.Metzner, A.B.: Rheology of suspensions in polymeric liquids. J. Rheol. 29, 739 (1985).CrossRefGoogle Scholar
39.Payne, A.R., Whittaker, R.E.: Effect of vulcanization on the low-strain dynamic properties of filled rubbers. J. Appl. Polym. Sci. 16, 1191 (1972).CrossRefGoogle Scholar
40.Kotsilkova, R., Nesheva, D., Nedkov, I., Krusteva, E., Stavrev, S.: Rheological, electrical, and microwave properties of polymers with nanosized carbon particles. J. Appl. Polym. Sci. 92, 2220 (2004).CrossRefGoogle Scholar
41.Du, F., Scogna, R.C., Zhou, W., Brand, S., Fisher, J.E., Winey, K.I.: Nanotube networks in polymer nanocomposites: Rheology and electrical conductivity. Macromolecules 37, 9048 (2004).CrossRefGoogle Scholar
42.Meincke, O., Kaempfer, D., Weickmann, H., Friedrich, C., Vathauer, M., Warth, H.: Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene. Polymer 45, 739 (2004).CrossRefGoogle Scholar
43.Mewis, J., Macosko, C.W. In Rheology. Principles, Measurements, and Applications (VCH Publishers, New York, 1994), Chap. 10.Google Scholar
44.Hough, L.A., Islam, M.F., Janmey, P.A., Yohd, A.G.: Viscoelasticity of single wall carbon nanotube suspensions. Phys. Rev. Lett. 93, 168102 (2004).CrossRefGoogle ScholarPubMed
45.Dani, A., Ogale, A.A.: Electrical percolation behavior of short-fiber composites: Experimental characterization and modeling. Compos. Sci. Technol. 57, 1355 (1997).CrossRefGoogle Scholar
46.Cantwell, W.J., Roulin-Moloney, A.C. In Fractography and Failure Mechanisms of Polymers and Composites, edited by Roulin-Moloney, A.C. (Elsevier Applied Sicence, London, UK, 1989), Chap. 7, pp. 256258.Google Scholar
47.Cantwell, W.J., Roulin-Moloney, A.C., Kaiser, T.: Fractography of unfilled and particulate-filled epoxy resins. J. Mater. Sci. 23, 1615 (1988).CrossRefGoogle Scholar
48.Bandyopadhyay, S.: Review of the microscopic and macroscopic aspects of fracture of unmodified epoxy resins. Mater. Sci. Eng. A 125, 157 (1990).CrossRefGoogle Scholar
49.Kausch, H.H.Polymer Fracture, 2nd ed. (Springer Verlag, Germany, 1987), Chap. 9, p. 382.Google Scholar
50.Cotterell, B.: Facture propagation in organic glasses. Int. J. Fract. Mech. 4, 209 (1968).CrossRefGoogle Scholar
51.Marcovich, N.E., Aranguren, M.I., Reboredo, M.M.: Modified woodflour as thermoset fillers. I. Effect of the chemical modification and percentage of filler on the mechanical properties. Polymer 42, 815 (2001).CrossRefGoogle Scholar
52.Nuñez, A.J., Sturm, P.C., Kenny, J.M., Aranguren, M.I., Marcovich, N.E., Reboredo, M.M.: Mechanical characterization of PP-woodflour composites. J. Appl. Polym. Sci. 88, 1420 (2003).CrossRefGoogle Scholar
53.Kornmann, X., Berglund, L.A., Sterte, J., Giannelis, E.P.: Nanocomposites based on montmorillonite and unsaturated polyester. Polym. Eng. Sci. 38, 1351 (1998).CrossRefGoogle Scholar
54.Helbert, W., Cavaillé, J.Y., Dufresne, A.: Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part I: Processing and mechanical behavior. Polym. Compos. 17, 604 (1996).CrossRefGoogle Scholar
55.Bréchet, Y., Cavaillé, J.Y., Chabert, E., Chazeau, L., Dendievel, R., Flandin, L., Gauthier, C.: Polymer based nanocomposites: Effect of filler-filler and filler-matrix interactions. Adv. Eng. Mater. 3, 571 (2001).3.0.CO;2-M>CrossRefGoogle Scholar