Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T04:22:31.776Z Has data issue: false hasContentIssue false

Catalytic graphitization of three-dimensional wood-derived porous scaffolds

Published online by Cambridge University Press:  14 January 2011

M.T. Johnson
Affiliation:
Department of Materials Science and Engineering, Robert R. McCormick School of Engineering and Applied Science, Northwestern University, Evanston, Illinois 60208-3108
K.T. Faber*
Affiliation:
Department of Materials Science and Engineering, Robert R. McCormick School of Engineering and Applied Science, Northwestern University, Evanston, Illinois 60208-3108
*
a)Address all correspondence to this author. e-mail: k-faber@northwestern.edu
Get access

Abstract

A catalytic technique to enhance graphite formation in nongraphitizing carbons was adapted to work with three-dimensional wood-derived scaffolds. Unlike many synthetic graphite precursors, wood and other cellulosic carbons remain largely disordered after high temperature pyrolysis. Using a nickel nitrate liquid catalyst and controlled pyrolysis conditions, wood-derived scaffolds were produced showing similar graphitic content to traditional pitch-based graphite while retaining the high-aspect ratio pores of the precursor wood microstructure. Graphite formation was studied as a function of processing time and pyrolysis temperature, and the resulting carbons were analyzed using x-ray diffraction, Raman spectroscopy, x-ray photoelectron spectroscopy, and electron microscopy techniques.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Greil, P., Lifka, T., and Kaindl, A.: Biomorphic cellular silicon carbide ceramics from wood: I. Processing and microstructure. J. Eur. Ceram. Soc. 18(14), 1961 (1998).CrossRefGoogle Scholar
2.Greil, P.: Biomorphous ceramics from lignocellulosics. J. Eur. Ceram. Soc. 21(2), 105 (2001).CrossRefGoogle Scholar
3.Kaul, V.S., Faber, K.T., Sepúlveda, R., de Arellano López, A.R., and Martínez-Fernández, J.: Precursor selection and its role in the mechanical properties of porous SiC derived from wood. Mater. Sci. Eng., A 428(1–2), 225 (2006).CrossRefGoogle Scholar
4.Pappacena, K.E., Faber, K.T., Wang, H., and Porter, W.D.: Thermal conductivity of porous silicon carbide derived from wood precursors. J. Am. Ceram. Soc. 90(9), 2855 (2007).CrossRefGoogle Scholar
5.Greil, P., Lifka, T., and Kaindl, A.: Biomorphic cellular silicon carbide ceramics from wood: II. Mechanical properties. J. Eur. Ceram. Soc. 18(14), 1975 (1998).CrossRefGoogle Scholar
6.Sieber, H., Hoffmann, C., Kaindl, A., and Greil, P.: Biomorphic cellular ceramics. Adv. Eng. Mater. 2(3), 105 (2000).3.0.CO;2-P>CrossRefGoogle Scholar
7.Varela-Feria, F.M., Martínez-Fernández, J., de Arellano-López, A.R., and Singh, M.: Low density biomorphic silicon carbide: Microstructure and mechanical properties. J. Eur. Ceram. Soc. 22(14–15), 2719 (2002).CrossRefGoogle Scholar
8.Qian, J.M., Wang, J.P., and Jin, Z.H.: Preparation of biomorphic SiC ceramic by carbothermal reduction of oak wood charcoal. Mater. Sci. Eng., A 371(1–2), 229 (2004).CrossRefGoogle Scholar
9.Pappacena, K.E., Johnson, M.T., Xie, S., and Faber, K.T.: Processing of wood-derived copper-silicon carbide composites via electrodeposition. Compos. Sci. Technol. 70(3), 485 (2010).CrossRefGoogle Scholar
10.Pappacena, K.E., Johnson, M.T., Wang, H., Porter, W.D., and Faber, K.T.: Thermal properties of wood-derived copper-silicon carbide composites fabricated via electrodeposition. Compos. Sci. Technol. 70(3), 478 (2010).CrossRefGoogle Scholar
11.Klett, J., Hardy, R., Romine, E., Walls, C., and Burchell, T.: High-thermal-conductivity, mesophase-pitch-derived carbon foams: Effect of precursor on structure and properties. Carbon 38(7), 953 (2000).CrossRefGoogle Scholar
12.Gaies, D. and Faber, K.T.: Thermal properties of pitch-derived graphite foam. Carbon 40(7), 1137 (2002).CrossRefGoogle Scholar
13.Zweben, C.: Advances in composite materials for thermal management in electronic packaging. JOM 50(6), 47 (1998).CrossRefGoogle Scholar
14.Franklin, R.E.: The structure of graphitic carbons. Acta Crystallogr. 4(5), 235 (1951).CrossRefGoogle Scholar
15.Byrne, C.E. and Nagle, D.C.: Carbonized wood monoliths—Characterization. Carbon 35(2), 267 (1997).CrossRefGoogle Scholar
16.Cheng, H.M., Endo, H., Okabe, T., Saito, K., and Zheng, G.B.: Graphitization behavior of wood ceramics and bamboo ceramics as determined by x-ray diffraction. J. Porous Mater. 6(3), 233 (1999).CrossRefGoogle Scholar
17.Oya, A. and Marsh, H.: Phenomena of catalytic graphitization. J. Mater. Sci. 17(2), 309 (1982).CrossRefGoogle Scholar
18.Ishimaru, K., Hata, T., Bronsveld, P., and Imamura, Y.: Microstructural study of carbonized wood after cell wall sectioning. J. Mater. Sci. 42(8), 2662 (2007).CrossRefGoogle Scholar
19.Sinclair, R., Itoh, T., and Chin, R.: In situ TEM studies of metal-carbon reactions. Microsc. Microanal. 8(4), 288 (2002).CrossRefGoogle ScholarPubMed
20.Sevilla, M., Sanchís, C., Valdés-Solís, T., Morallón, E., and Fuertes, A.B.: Synthesis of graphitic carbon nanostructures from sawdust and their application as electrocatalyst supports. J. Phys. Chem. C 111(27), 9749 (2007).CrossRefGoogle Scholar
21.Derbyshire, F.J., Presland, A.E.B., and Trimm, D.L.: Graphite formation by dissolution-precipitation of carbon in cobalt, nickel and iron. Carbon 13(2), 111 (1975).CrossRefGoogle Scholar
22.Yokokawa, C., Hosokawa, K., and Takegami, Y.: A kinetic study of catalytic graphitization of hard carbon. Carbon 5(5), 475 (1967).CrossRefGoogle Scholar
23.Fischbach, D.B.: The Kinetics and Mechanism of Graphitization, edited by Walker, P.L. Jr.(Marcel Dekker, Inc., New York, 1971).Google Scholar
24.Maldonado-Hódar, F.J., Moreno-Castilla, C., Rivera-Utrilla, J., Hanzawa, Y., and Yamada, Y.: Catalytic graphitization of carbon aerogels by transition metals. Langmuir 16(9), 4367 (2000).CrossRefGoogle Scholar
25.ASTM C373: Standard test method for water absorption, bulk density, apparent porosity, and apparent specific gravity of fired whiteware products. (ASTM International, West Conshohocken, Pennsylvania, 2006).Google Scholar
26.Díaz, J., Paolicelli, G., Ferrer, S., and Comin, F.: Separation of the sp 3 and sp 2 components in the C1 s photoemission spectra of amorphous carbon films. Phys. Rev. B 54(11), 8064 (1996).CrossRefGoogle Scholar
27.Filik, J., May, P.W., Pearce, S.R.J., Wild, R.K., and Hallam, K.R.: XPS and laser Raman analysis of hydrogenated amorphous carbon films. Diamond Relat. Mater. 12, 974 (2003).CrossRefGoogle Scholar
28.Klett, J.: Process for making carbon foam. U.S. Patent No. 6033506 (2000).Google Scholar
29.Pappacena, K.E., Gentry, S.P., Wilkes, T.E., Johnson, M.T., Xie, S., Davis, A., and Faber, K.T.: Effect of pyrolyzation temperature on wood-derived carbon and silicon carbide. J. Eur. Ceram. Soc. 29(14), 3069 (2009).CrossRefGoogle Scholar
30.Tunistra, F. and Koenig, J.L.: Raman spectrum of graphite. J. Chem. Phys. 53(3), 1126 (1970).CrossRefGoogle Scholar
31.Sadezky, A., Muckenhuber, H., Grothe, H., Niessner, R., and Pöschl, U.: Raman micro spectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon 43(8), 1731 (2005).CrossRefGoogle Scholar
32.Dinwoodie, J.M.: Wood: Nature’s Cellular, Polymeric, Fibre-Composite (Institute of Metals, London, 1989).Google Scholar
33.Smith, W.F.: Structure and Properties of Engineering Alloys, 2nd ed. (McGraw-Hill, New York, 1993).Google Scholar
34.El-Barbary, A.A., Trasobares, S., Ewels, C.P., Stephan, O., Okotrub, A.V., Bulusheva, L.G., Fall, C.J., and Heggie, M.I.: Electron spectroscopy of carbon materials: Experiment and theory. J. Phys. Conf. Ser. 26(1), 149 (2006).CrossRefGoogle Scholar