Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T14:36:04.687Z Has data issue: false hasContentIssue false

Catalyst-free synthesis and cathodoluminescent properties of ZnO nanobranches on Si nanowire backbones

Published online by Cambridge University Press:  31 January 2011

Kwang-Soo Son
Affiliation:
Division of Materials Science and Engineering, Hanyang University, Seoul 133-791, Korea
Dong Hyun Lee
Affiliation:
Division of Materials Science and Engineering, Hanyang University, Seoul 133-791, Korea
Jae-Woong Choung
Affiliation:
Division of Materials Science and Engineering, Hanyang University, Seoul 133-791, Korea
Yong Bum Pyun
Affiliation:
Division of Materials Science and Engineering, Hanyang University, Seoul 133-791, Korea
Won Il Park*
Affiliation:
Division of Materials Science and Engineering, Hanyang University, Seoul 133-791, Korea
Taeseup Song
Affiliation:
Division of Materials Science and Engineering, Hanyang University, Seoul 133-791, Korea
Ungyu Paik
Affiliation:
Division of Materials Science and Engineering, Hanyang University, Seoul 133-791, Korea
*
a)Address all correspondence to this author. e-mail: wipark@hanyang.ac.kr
Get access

Abstract

We report the catalyst-free synthesis of ZnO nanobranches on Si nanowires using metalorganic chemical vapor deposition. The formation of single-crystalline ZnO nanobranches on Si nanowire backbones has been confirmed by lattice resolved transmission electron microscopy. Depending on the growth parameters, especially the growth temperature, the morphology and size of the ZnO nanobranches evolved from nanothorn-shaped (at 350 °C) to nanoneedle-shaped structures (at 500 °C). When the growth temperature was further increased to 800 °C, thin ZnO nanowire branches grew out of the Si nanowire backbones coated with thin ZnO shells, whereas no ZnO branch was formed on bare Si nanowires due to limited nucleation. The growth behavior was further exploited to fabricate ZnO/Si nanowire networks by growing the ZnO nanowires selectively on laterally aligned Si–ZnO core-shell nanowire arrays. In addition, cathodoluminescent properties of ZnO nanobranches on Si nanowire backbones are discussed with respect to position and size.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F., Yan, H.: One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 15, 353 2003CrossRefGoogle Scholar
2Djurii, A.B., Leung, Y.H.: Optical properties of ZnO nanostructures. Small 2, 944 2006Google Scholar
3Bae, S.Y., Seo, H.W., Choi, H.C., Park, J., Park, J.: Heterostructures of ZnO nanorods with various one-dimensional nanostructures. J. Phys. Chem. B 108, 12318 2004CrossRefGoogle Scholar
4Baek, Y., Song, Y., Yong, K.: A novel heteronanostructure system: Hierarchical W nanothorn arrays on WO3 nanowhiskers. Adv. Mater. 18, 3105 2006Google Scholar
5Gao, P.X., Wang, Z.L.: Nanopropeller arrays of zinc oxide. Appl. Phys. Lett. 84, 2883 2004CrossRefGoogle Scholar
6Yang, Y.H., Chen, X.Y., Feng, Y., Yang, G.W.: Physical mechanism of blue-shift of UV luminescence of a single pencil-like ZnO nanowire. Nano Lett. 7, 3879 2007CrossRefGoogle ScholarPubMed
7Cai, X.M., Djurišić, A.B., Xie, M.H., Chiu, C.S., Gwo, S.: Growth mechanism of stacked-cone and smooth-surface GaN nanowires. Appl. Phys. Lett. 87, 183103 2005Google Scholar
8Song, T., Choung, J.W., Park, W.I., Paik, U., Rogers, J.A.: Surface polarity and shape-controlled synthesis of ZnO nanostructures on GaN thin films based on catalyst-free metalorganic vapor phase epitaxy. Adv. Mater. 20 2008 in pressGoogle Scholar
9Gudiksen, M.S., Lauhon, L.J., Wang, J., Smith, D.C., Lieber, C.M.: Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415, 617 2002CrossRefGoogle ScholarPubMed
10Wu, Y., Fan, R., Yang, P.: Block-by-block growth of single-crystalline Si/SiGe superlattice nanowires. Nano Lett. 2, 83 2002CrossRefGoogle Scholar
11Björk, M.T., Ohlsson, B.J., Sass, T., Persson, A.I., Thelander, C., Magnusson, M.H., Deppert, K., Wallenberg, L.R., Samuelson, L.: One-dimensional steeplechase for electrons realized. Nano Lett. 2, 87 2007CrossRefGoogle Scholar
12Park, W.I., Yi, G-C., Kim, M., Pennycook, S.J.: Quantum confinement observed in ZnO/ZnMgO nanorod heterostructures. Adv. Mater. 15, 526 2003Google Scholar
13Lauhon, L.J., Gudiksen, M.S., Wang, D., Lieber, C.M.: Epitaxial core-shell and core-multishell nanowire heterostructures. Nature 420, 57 2002Google Scholar
14Park, W.I., Yoo, J., Kim, D-W., Yi, G-C.: Fabrication and photoluminescent properties of heteroepitaxial ZnO/Zn0.8Mg0.2O coaxial nanorod heterostructures. J. Phys. Chem. B 110, 1516 2006CrossRefGoogle ScholarPubMed
15Wang, D., Lieber, C.M.: Inorganic materials: Nanocrystals branch out. Nat. Mater. 2, 355 2003CrossRefGoogle ScholarPubMed
16Manna, L., Milliron, D.J., Meisel, A., Scher, E.C., Alivisatos, A.P.: Controlled growth of tetrapod-branched inorganic nanocrystals. Nat. Mater. 2, 382 2003Google Scholar
17Yan, H., He, R., Johnson, J., Law, M., Saykally, R.J., Yang, P.: Dendritic nanowire ultraviolet laser array. J. Am. Chem. Soc. 125, 4728 2003Google Scholar
18Lao, J., Wen, J., Ren, Z.F.: Hierarchical ZnO nanostructures. Nano Lett. 2, 1287 2002CrossRefGoogle Scholar
19Wang, Z.L., Kong, X.Y., Zuo, J.M.: Induced growth of asymmetric nanocantilever arrays on polar surfaces. Phys. Rev. Lett. 91, 185502 2003CrossRefGoogle ScholarPubMed
20Wang, D., Qian, F., Yang, C., Zhong, Z., Lieber, C.M.: Rational growth of branched and hyperbranched nanowire structures. Nano Lett. 4, 871 2004Google Scholar
21Dick, K.A., Deppert, K., Larsson, M.W., Martensson, T., Seifert, W., Wallenberg, L.R., Samuelson, L.: Synthesis of branched ‘nanotrees’ by controlled seeding of multiple branching events. Nat. Mater. 3, 380 2004CrossRefGoogle ScholarPubMed
22Jung, Y., Ko, D-K., Agarwal, R.: Synthesis and structural characterization of single-crystalline branched nanowire heterostructures. Nano Lett. 7, 264 2007CrossRefGoogle ScholarPubMed
23Park, W.I., Kim, D.H., Jung, S-W., Yi, G-C.: Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods. Appl. Phys. Lett. 80, 4232 2002CrossRefGoogle Scholar
24Choi, Y-J., Park, J-H., Park, J-G.: Synthesis of ZnO nanorods by a hot-wall high-temperature metalorganic chemical vapor deposition process. J. Mater. Res. 20, 959 2005Google Scholar
25Park, W.I., Yi, G-C., Kim, M., Pennycook, S.J.: ZnO nanoneedles grown vertically on Si substrates by non-catalytic vapor-phase epitaxy. Adv. Mater. 14, 1841 2002Google Scholar
26Kim, D.C., Kong, B.H., Jeon, S-Y., Yoo, J-B., Cho, H.K.: Low-temperature growth and characterization of epitaxial ZnO nanorods by metalorganic chemical vapor deposition. J. Mater. Res. 22, 2032 2007Google Scholar
27Patolsky, F., Zheng, G., Lieber, C.M.: Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species. Nat. Protoc. 1, 1711 2006Google Scholar
28Park, W.I., Kim, D-W., Jung, S.W., Yi, G-C.: Catalyst-free growth of ZnO nanorods and their nanodevice applications. Int. J. Nanotechnol. 3, 372 2006Google Scholar
29Wander, A., Schedin, F., Steadman, P., Norris, A., McGrath, R., Turner, T.S., Thornton, G., Harrison, N.M.: Stability of polar oxide surfaces. Phys. Rev. Lett. 86, 3811 2001CrossRefGoogle ScholarPubMed
30Yang, R., Wang, Z.L.: Interpenetrative and transverse growth process of self-catalyzed ZnO nanorods. Solid State Commun. 134, 741 2005CrossRefGoogle Scholar
31Park, W.I., Yoo, J., Yi, G-C.: Catalyst-free metalorganic chemical-vapor deposition of ultrafine ZnO nanorods. J. Korean Phys. Soc. 46, L1067 2005Google Scholar
32Liu, X., Wu, X., Cao, H., Chang, R.P.H.: Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition. J. Appl. Phys. 95, 3141 2004CrossRefGoogle Scholar
33Javey, A., Nam, S., Friedman, R.S., Yan, H., Lieber, C.M.: Layer-by-layer assembly of nanowires for three-dimensional, multifunctional electronics. Nano Lett. 7, 773 2007CrossRefGoogle ScholarPubMed
34Fan, H.J., Fuhrmann, B., Scholz, R., Himcinschi, C., Berger, A., Leipner, H., Dadgar, A., Krost, A., Christiansen, S., Gösele, U., Zacharias, M.: Vapour-transport-deposition growth of ZnO nanostructures: Switch between c-axial wires and a-axial belts by indium doping. Nanotechnology 17, S231 2006CrossRefGoogle Scholar
35Pan, N., Wang, X.P., Li, M., Li, F.Q., Hou, J.G.: Strong surface effect on cathodoluminescence of an individual tapered ZnO nanorod. J. Phys. Chem. C 111, 17265 2007CrossRefGoogle Scholar