Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T12:00:42.692Z Has data issue: false hasContentIssue false

Carbon nanofibers prepared by electrospinning accompanied with phase-separation method for supercapacitors: Effect of thermal treatment temperature

Published online by Cambridge University Press:  25 September 2017

Yongtao Tan
Affiliation:
State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, People’s Republic of China; and School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, People’s Republic of China
Dongshan Lin
Affiliation:
School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, People’s Republic of China
Chang Liu
Affiliation:
School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, People’s Republic of China; and Department of Chemistry, University of New Hampshire, Durham, New Hampshire 03824, USA
Wenchun Wang
Affiliation:
School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, People’s Republic of China
Long Kang
Affiliation:
State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, People’s Republic of China; and School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, People’s Republic of China
Fen Ran*
Affiliation:
State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, People’s Republic of China; and School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: ranfen@163.com or ranfen@lut.cn
Get access

Abstract

Carbon nanofibers are prepared via the electrospinning method accompanied by the phase-separation process using polyacrylonitrile as a carbon precursor. Effects of preoxidation and carbonation temperatures on electrochemical performance are studied and optimized in detail. The morphology and porous structure are characterized by scanning electron microscope, transmission electron microscope, and nitrogen adsorption and desorption measurements, respectively; the electrochemical performances are measured by the CHI660E workstation. The results show that the diameter of carbon nanofibers is about 150–200 nm with a uniform and smooth surface. The optimized preoxidation temperature is 280 °C with a carbonation temperature of 700 °C. The highest capacitance is up to 155 F/g, and the symmetric supercapacitor delivers a maximum energy density of 7.78 W h/kg with a power density of 400 W/kg and a maximum power density of 4000 W/kg with an energy density of 2.0 W h/kg. The symmetric supercapacitor also exhibits good cycle stability 91.0% of initial specific capacitance after 5000 cycles.

Type
Invited Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

b)

These authors contributed equally to this work.

Contributing Editor: Tianyu Liu

References

REFERENCES

Abruña, H.D., Kiya, Y., and Henderson, J.C.: Batteries and electrochemical capacitors. Phys. Today 61, 4347 (2008).Google Scholar
Miller, J.R. and Burke, A.F.: Electrochemical capacitors challenges and opportunities for real-world applications. Electrochem. Soc. Interface 17, 5357 (2008).Google Scholar
Simon, P. and Gogotsi, Y.: Materials for electrochemical capacitor. Nat. Mater. 7, 845854 (2008).Google Scholar
Burke, A.: Ultracapacitors: Why, how, and where is the technology. J. Power Sources 91, 3750 (2000).Google Scholar
Väyrynen, A. and Salminen, J.: Lithium ion battery production. J. Chem. Thermodyn. 46, 8085 (2012).Google Scholar
Lu, X., Zhai, T., Zhang, X., Shen, Y., Yuan, L., Hu, B., Gong, L., Chen, J., Gao, Y., Zhou, J., Tong, Y., and Wang, Z.L.: WO3−x@Au@MnO2 core–shell nanowires on carbon fabric for high-performance flexible supercapacitors. Adv. Mater. 24, 938944 (2012).Google Scholar
Sk, M.M., Yue, C.Y., Ghosh, K., and Jena, R.K.: Review on advances in porous nanostructured nickel oxides and their composite electrodes for high-performance supercapacitors. J. Power Sources 308, 121140 (2016).Google Scholar
Li, B., Zheng, M., Xue, H., and Pang, H.: High performance electrochemical capacitor materials focusing on nickel based materials. Inorg. Chem. Front. 3, 175202 (2016).Google Scholar
Zhang, Y., Wu, J., Zheng, T.X., Zhang, Y.X., and Liu, H.: Binder-free supercapacitive of ultrathin Co(OH)2 nanosheets-decorated nitrogen-doped carbon nanotubes core-shell nanostructures. Mater. Technol. 31, 521525 (2016).Google Scholar
Yuan, C., Yang, L., Hou, L., Shen, L., Zhang, X., and Lou, X.W.: Growth of ultrathin mesoporous Co3O4 nanosheet arrays on Ni foam for high-performance electrochemical capacitors. Energy Environ. Sci. 5, 78837887 (2012).Google Scholar
Xu, J., Wang, Q., Wang, X., Xiang, Q., Hang, B., Chen, D., and Shen, G.: Flexible asymmetric supercapacitors based upon Co9S8 Nanorod//Co3O4@RuO2 nanosheet arrays on carbon cloth. Acs Nano 7, 54535462 (2013).Google Scholar
Du, W., Liu, R., Jiang, Y., Lu, Q., Fan, Y., and Gao, F.: Facile synthesis of hollow Co3O4 boxes for high capacity supercapacitor. J. Power Sources 227, 101105 (2013).Google Scholar
Tan, Y., Liu, Y., Kong, L., Kang, L., and Ran, F.: Supercapacitor electrode of nano-Co3O4 decorated with gold nanoparticles via in situ reduction method. J. Power Sources 363, 18 (2017).Google Scholar
Huang, M., Li, F., Dong, F., Zhang, Y.X., and Zhang, L.L.: MnO2-based nanostructures for high-performance supercapacitors. J. Mater. Chem. A 3, 2138021423 (2015).Google Scholar
Wang, J.G., Kang, F.Y., and Wei, B.Q.: Engineering of MnO2-based nanocomposites for high-performance supercapacitors. Prog. Mater. Sci. 74, 51124 (2015).Google Scholar
Qu, Q., Zhang, P., Wang, B., Chen, Y., Tian, S., Wu, Y., and Holze, R.: Electrochemical performance of MnO2 nanorods in neutral aqueous electrolytes as a cathode for asymmetric supercapacitors. J. Phys. Chem. C 113, 1402014027 (2009).Google Scholar
Chen, Z., Augustyn, V., Wen, J., Zhang, Y., Shen, M., Dunn, B., and Lu, Y.: High-performance supercapacitors based on intertwined CNT/V2O5 nanowire nanocomposites. Adv. Mater. 23, 791795 (2011).Google Scholar
Yang, Y.L., Shen, K.W., Liu, Y., Tan, Y.T., Zhao, X.N., Wu, J.Y., and Niu, X.Q.: Fen ran, novel hybrid nanoparticles of vanadium nitride/porous carbon as an anode material for symmetrical supercapacitor. Nano-Micro Lett. 9, 6 (2017).Google Scholar
Wu, Y.G. and Ran, F.: Vanadium nitride quantum dot/nitrogen-doped microporous carbon nanofibers electrode for high-performance supercapacitors. J. Power Sources 344, 110 (2017).Google Scholar
Yang, Y., Zhao, L., Shen, K., Liu, Y., Zhao, X., Wu, Y., Wang, Y., and Ran, F.: Ultra-small vanadium nitride quantum dots embedded in porous carbon as high performance electrode materials for capacitive energy storage. J. Power Sources 333, 6171 (2016).Google Scholar
Hu, X., Zhang, W., Liu, X., Mei, Y., and Huang, Y.: Nanostructured Mo-based electrode materials for electrochemical energy storage. Chem. Soc. Rev. 44, 23762404 (2015).Google Scholar
Snook, G.A., Kao, P., and Best, A.S.: Conducting-polymer-based supercapacitor devices and electrodes. J. Power Sources 196, 112 (2011).Google Scholar
Baker, C.O., Huang, X., Nelson, W., and Kaner, R.B.: Polyaniline nanofibers: Broadening applications for conducting polymers. Chem. Soc. Rev. 46, 15101525 (2017).Google Scholar
Liu, T.Y., Finn, L., Yu, M.H., Wang, H.Y., Zhai, T., Lu, X.H., Tong, Y.X., and Li, Y.: Polyaniline and polypyrrole pseudocapacitor electrodes with excellent cycling stability. Nano Lett. 14, 25222527 (2014).Google Scholar
Tan, Y.T., Liu, Y.S., Kong, L.B., Kang, L., Xu, C.A., and Ran, F.: In situ doping of PANI nanocomposites by gold nanoparticles for high-performance electrochemical energy storage. J. Appl. Polym. Sci. 134, 45309 (2017).Google Scholar
Song, Y., Liu, T.Y., Xu, X.X., Feng, D.Y., Li, Y., and Liu, X.X.: Pushing the cycling stability limit of polypyrrole for supercapacitors. Adv. Funct. Mater. 25, 46264632 (2015).Google Scholar
Tan, Y.T., Zhang, Y.F., Kong, L.B., Kang, L., and Ran, F.: Nano-Au@PANI core–shell nanoparticles via in situ polymerization as electrode for supercapacitor. J. Alloys Compd. 722, 17 (2017).Google Scholar
Huang, Y., Zhu, M., Pei, Z., Huang, Y., Geng, H., and Zhi, C.: Extremely stable polypyrrole achieved via molecular ordering for highly flexible supercapacitors. ACS Appl. Mater. Interfaces 8, 24352440 (2016).Google Scholar
Tan, Y.T., Ran, F., Kong, L.B., Liu, J., and Kang, L.: Polyaniline nanoparticles grown on the surface of carbon microspheres aggregations for electrochemical supercapacitors. Synth. Met. 162, 114118 (2012).Google Scholar
Zhai, Y., Dou, Y., Zhao, D., Fulvio, P.F., Mayes, R.T., and Dai, S.: Carbon materials for chemical capacitive energy storage. Adv. Mater. 23, 48284850 (2011).Google Scholar
Dai, L., Chang, D.W., Baek, J.B., and Lu, W.: Carbon nanomaterials for advanced energy conversion and storage. Small 8, 11301166 (2012).CrossRefGoogle ScholarPubMed
Ghosh, A. and Lee, Y.H.: Carbon-based electrochemical capacitors. ChemSusChem 5, 480499 (2012).Google Scholar
Zhang, C.M., Geng, Z., Cai, M., Zhang, J., Liu, X.P., Xin, H.F., and Ma, J.X.: Microstructure regulation of super activated carbon from biomass source corncob with enhanced hydrogen uptake. Int. J. Hydrogen Energy 38, 92439250 (2013).Google Scholar
Kimizuka, O., Tanaike, O., Yamashita, J., Hiraoka, T., Futaba, D.N., Hata, K., Machida, K., Suematsu, S., Tamamitsu, K., Saeki, S., Yamada, Y., and Hatori, H.: Electrochemical doping of pure single-walled carbon nanotubes used as supercapacitor electrodes. Carbon 46, 19992001 (2008).Google Scholar
Fan, H.L., Ran, F., Zhang, X.X., Song, H.M., Jing, W.X., Shen, K.W., Kong, L.B., and Kang, L.: Easy fabrication and high electrochemical capacitive performance of hierarchical porous carbon by a method combining liquid–liquid phase separation and pyrolysis process. Electrochim. Acta 138, 367375 (2014).Google Scholar
Enterria, M., Pereira, M.F.R., Martins, J.I., and Figueiredo, J.L.: Hydrothermal functionalization of ordered mesoporous carbons: The effect of boron on supercapacitor performance. Carbon 95, 7283 (2015).Google Scholar
Li, H., Yuan, D., Tang, C., Wang, S., Sun, J., Li, Z., Tang, T., Wang, F., Gong, H., and He, C.: Lignin-derived interconnected hierarchical porous carbon monolith with large areal/volumetric capacitances for supercapacitor. Carbon 100, 151157 (2016).Google Scholar
Wei, T., Wei, X., Gao, Y., and Li, H.: Large scale production of biomass-derived nitrogen-doped porous carbon materials for supercapacitors. Electrochim. Acta 169, 186194 (2015).Google Scholar
Kang, D., Liu, Q., Gu, J., Su, Y., Zhang, W., and Zhang, D.: “Egg-box”-assisted fabrication of porous carbon with small mesopores for high-rate electric double layer capacitors. ACS Nano 9, 1122511233 (2015).Google Scholar
Kim, W., Kang, M.Y., Joo, J.B., Kim, N.D., Song, I.K., Kim, P., Yoon, J.R., and Yi, J.: Preparation of ordered mesoporous carbon nanopipes with controlled nitrogen species for application in electrical double-layer capacitors. J. Power Sources 195, 21252129 (2010).CrossRefGoogle Scholar
Lin, T., Chen, I.W., Liu, F., Yang, C., Bi, H., Xu, F., and Huang, F.: Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 350, 15081513 (2015).Google Scholar
Hulicova-Jurcakova, D., Kodama, M., Shiraishi, S., Hatori, H., Zhu, Z.H., and Lu, G.Q.: Nitrogen-enriched nonporous carbon electrodes with extraordinary supercapacitance. Adv. Funct. Mater. 19, 18001809 (2009).Google Scholar
Zhang, L.L., Zhou, R., and Zhao, X.S.: Graphene-based materials as supercapacitor electrodes. J. Mater. Chem. 20, 59835992 (2010).Google Scholar
Yan, J., Wang, Q., Wei, T., and Fan, Z.: Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv. Energy Mater. 4, 1300816 (2014).Google Scholar
Wang, Y., Song, Y., and Xia, Y.: Electrochemical capacitors: Mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 45, 59255950 (2016).CrossRefGoogle ScholarPubMed
Yu, Z.N., Tetard, L., Zhai, L., and Thomas, J.: Supercapacitor electrode materials: Nanostructures from 0 to 3 dimensions. Energy Environ. Sci. 8, 702730 (2015).Google Scholar
Zhou, D., Niu, H., Lin, H.M., Yang, X., Jiang, H., Zhang, T., Wang, Q., and Qu, F.Y.: 3D interconnected networks of a ternary hierarchical carbon nanofiber/MnO2/Ni(OH)2 architecture as integrated electrodes for all-solid-state supercapacitors. RSC Adv. 6, 7188271892 (2016).Google Scholar
Tang, K.X., Li, Y.P., Li, Y.J., Cao, H.B., Zhang, Z.S., Zhang, Y., and Yang, J.: Self-reduced VO/VOx/carbon nanofiber composite as binder-free electrode for supercapacitors. Electrochim. Acta 209, 709718 (2016).Google Scholar
Ma, X.J., Kolla, P., Zhao, Y., Smirnova, A.L., and Fong, H.: Electrospun lignin-derived carbon nanofiber mats surface-decorated with MnO2 nanowhiskers as binder-free supercapacitor electrodes with high performance. J. Power Sources 325, 541548 (2016).Google Scholar
Wang, B., Lu, G., Luo, Q.P., and Wang, T.H.: Free-standing porous carbon nano fiber networks from electrospinning polyimide for supercapacitors. J. Nanomater. 4305437, 17 (2016).Google Scholar
Zhu, D.Z., Cheng, K., Wang, Y.W., Sun, D.M., Gan, L.H., Chen, T., Jiang, J.X., and Liu, M.X.: Nitrogen-doped porous carbons with nanofiber-like structure derived from poly(aniline-co-p-phenylenediamine) for supercapacitors. Electrochim. Acta 224, 1724 (2017).Google Scholar
Nataraj, S.K., Yang, K.S., and Aminabhavi, T.M.: Polyacrylonitrile-based nanofibers: A state-of-the-art review. Prog. Polym. Sci. 37, 487513 (2012).Google Scholar
Yusof, N. and Ismail, A.F.: Post spinning and pyrolysis processes of polyacrylonitrile (PAN)-based carbon fiber and activated carbon fiber: A review. J. Anal. Appl. Pyrolysis 93, 113 (2012).Google Scholar
Xue, G.B., Zhong, J., Cheng, Y.L., and Wang, B.: Facile fabrication of cross-linked carbon nanofiber via directly carbonizing electrospun polyacrylonitrile nanofiber as high performance scaffold for supercapacitors. Electrochim. Acta 215, 2935 (2016).Google Scholar
Wei, K., Kim, K.O., Song, K.H., Kang, C.Y., Lee, J.S., Gopiraman, M., and Kim, I.S.: Nitrogen- and oxygen-containing porous ultrafine carbon nanofiber: A highly flexible electrode material for supercapacitor. J. Mater. Sci. Technol. 33, 424431 (2017).Google Scholar
Kim, B.H., Kim, C.H., and Lee, D.G.: Mesopore-enriched activated carbon nanofiber web containing RuO2 as electrode material for high-performance supercapacitors. J. Electroanal. Chem. 760, 6470 (2016).Google Scholar
Huang, K.B., Yao, Y.Y., Yang, X.W., Chen, Z.H., and Li, M.: Fabrication of flexible hierarchical porous nitrogen-doped carbon nanofiber films for application in binder-free supercapacitors. Mater. Chem. Phys. 169, 15 (2016).Google Scholar
Saito, Y., Meguro, M., Ashizawa, M., Waki, K., Yuksel, R., Unalan, H.E., and Matsumoto, H.: Manganese dioxide nanowires on carbon nanofiber frameworks for efficient electrochemical device electrodes. RSC Adv. 7, 1235112358 (2017).Google Scholar
Liu, C., Tan, Y., Liu, Y., Shen, K., Peng, B., Niu, X., and Ran, F.: Microporous carbon nanofibers prepared by combining electrospinning and phase separation methods for supercapacitor. J. Energy Chem. 25, 587593 (2016).Google Scholar
Shokuhfar, A., Sedghi, A., and Farsani, R.E.: Effect of thermal characteristics of commercial and special polyacrylonitrile fibres on the fabrication of carbon fibres. Mater. Sci. Technol. 22, 12351239 (2006).Google Scholar
Zhang, S.L. and Pan, N.: Supercapacitors performance evaluation. Adv. Energy Mater. 5, 1401401 (2015).Google Scholar
Supplementary material: File

Tan et al supplementary material

Tan et al supplementary material 1

Download Tan et al supplementary material(File)
File 151.6 KB