Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T11:52:40.341Z Has data issue: false hasContentIssue false

Calorimetric study of CaCu3Ti4O12, a ceramic with giant permittivity

Published online by Cambridge University Press:  31 January 2011

Andrey A. Levchenko
Affiliation:
Peter A. Rock Thermochemistry Laboratory and Nanomaterials in the Environment, Agriculture, and Technology-Organized Research Unit (NEAT ORU), University of California at Davis, Davis, California 95616
Loïc Marchin
Affiliation:
Centre Interuniversitaire de Recherche et d’Ingénierie des Matériaux (CIRIMAT/LCMIE), Université Paul Sabatier, Bât. 2R1, 31062 Toulouse Cedex 9, France
Yosuke Moriya
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology, Midori-ku, Yokohama, 226-8503 Japan
Hitoshi Kawaji
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology, Midori-ku, Yokohama, 226-8503 Japan
Tooru Atake
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology, Midori-ku, Yokohama, 226-8503 Japan
Sophie Guillemet-Fritsch
Affiliation:
Centre Interuniversitaire de Recherche et d’Ingénierie des Matériaux (CIRIMAT/LCMIE), Université Paul Sabatier, Bât. 2R1, 31062 Toulouse Cedex 9, France
Bernard Durand
Affiliation:
Centre Interuniversitaire de Recherche et d’Ingénierie des Matériaux (CIRIMAT/LCMIE), Université Paul Sabatier, Bât. 2R1, 31062 Toulouse Cedex 9, France
Alexandra Navrotsky
Affiliation:
Peter A. Rock Thermochemistry Laboratory and Nanomaterials in the Environment, Agriculture, and Technology-Organized Research Unit (NEAT ORU), University of California at Davis, Davis, California 95616
Get access

Abstract

We conducted an investigation into the thermodynamic properties of two stoichiometric CaCu3Ti4O12(CCTO) samples prepared by solid-state reaction and soft chemistry methods to probe the stability of the material relative to simpler oxide constituents (e.g., CaO, CuO, and TiO2) over a wide temperature range. Thermodynamic functions (i.e., heat capacity, formation enthalpies, entropies, and Gibbs free energies) have been measured from near absolute zero to 1100 K using calorimetric methods, including drop solution, low-temperature adiabatic relaxation, and differential scanning calorimetry. In addition, the thermodynamic characteristics of the magnetic-phase transition from the antiferromagnetic to the paramagnetic state are reported. It has been shown that CCTO is very stable relative to constituent oxides and calcium titanate at room temperature and higher, independent of the synthesis route. The enthalpic factor is dominant in the thermodynamics of CCTO, with the entropic factor having almost no effect on the stability of the compound relative to other oxide assemblages. The recommended values for the standard molar enthalpy of formation from constituent oxides and from elements at 298.15 K are −122.1 ± 4.5 and −4155.7 ± 5.2 kJ/mol−1, respectively. The mean of the third law entropy at 298.15 K is 368.4 ± 0.1 J/mol−1/K−1. Based on the thermodynamic data reported, the study confirms the possibility of CCTO decomposition in a reducing atmosphere or CO2 under conditions recently observed in experiments.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Subramanian, M.A., Li, D., Duan, N., Reisner, B.A.Sleight, A.W.: High-dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases. J. Solid State Chem. 151, 323 2000Google Scholar
2Ramirez, A.P., Subramanian, M.A., Gardel, M., Blumberg, G., Li, D., Vogt, T.Shapiro, S.M.: Giant dielectric constant response in a copper-titanate. Solid State Commun. 115, 217 2000CrossRefGoogle Scholar
3Sinclair, D.C., Adams, T.B., Morrison, F.D.West, A.R.: CaCu3Ti4O12: One-step internal barrier layer capacitor. Appl. Phys. Lett. 80, 2153 2002CrossRefGoogle Scholar
4Adams, T.B., Sinclair, D.C.West, A.R.: Giant barrier layer capacitance effects in CaCu3Ti4O12 ceramics. Adv. Mater. 14, 1321 2002Google Scholar
5West, A.R., Adams, T.B., Morrison, F.D.Sinclair, D.C.: Novel high capacitance materials: BaTiO3: La and CaCu3Ti4O12. J. Eur. Ceram. Soc. 24, 1439 2004Google Scholar
6Li, J., Subramanian, M.A., Rosenfeld, H.D., Jones, C.Y., Toby, B.H.Sleight, A.W.: Clues to the giant dielectric constant of CaCu3Ti4O12 in the defect structure of “SrCu3Ti4O12”. Chem. Mater. 16, 5223 2004CrossRefGoogle Scholar
7Whangbo, M.H.Subramanian, M.A.: Structural model of planar defects in CaCu3Ti4O12 exhibiting a giant dielectric constant. Chem. Mater. 18, 3257 2006Google Scholar
8Marchin, L., Levchenko, A.A., Guillemet-Fritsch, S., Navrotsky, A.Durand, B.: Grain-growth controlled giant permittivity in soft chemistry CaCu3Ti4O12 ceramics. J. Am. Ceram. Soc. 91(2), 351 2008CrossRefGoogle Scholar
9Deschanvres, A., Raveveau, B.Tollemer, F.: Substitution of copper for a bivalent metal in titanates of perovskite type. Bull. Soc. Chim. Fr. 11, 4077 1967Google Scholar
10Homes, C.C., Vogt, T., Shapiro, S.M., Wakimoto, S.Ramirez, A.P.: Optical response of high-dielectric constant perovskite-related oxide. Science 293, 673 2001CrossRefGoogle ScholarPubMed
11Choudhary, R.N.P.Bhunia, U.: Structural, dielectric and electrical properties of ACu3Ti4O12 (A = Ca, Sr and Ba). J. Mater. Sci. 37, 5177 2002Google Scholar
12Fang, T.T.Liu, C.P.: Evidence of the internal domains for inducing the anomalously high-dielectric constant of CaCu3Ti4O12. Chem. Mater. 17, 5167 2005CrossRefGoogle Scholar
13Wang, C.C.Zhang, L.W.: Surface-layer effect in CaCu3Ti4O12. Appl. Phys. Lett. 88, 042906 2006CrossRefGoogle Scholar
14Calvert, C.C., Rainforth, W.M., Sinclair, D.C.West, A.R.: EELS characterisation of bulk CaCu3Ti4O12 ceramics. Micron 37, 412 2006Google Scholar
15Fang, T.T., Mei, L.T.Ho, H.F.: Effects of Cu stoichiometry on the micro structures, barrier-layer structures, electrical conduction, dielectric responses, and stability of CaCu3Ti4O12. Acta Mater. 54, 2867 2006Google Scholar
16Marchin, L., Guillemet-Fritsch, S.Durand, B.: Soft chemistry synthesis of the perovskite CaCu3Ti4O12. Prog. Solid State Chem. 36, 151 2007Google Scholar
17Koitzsch, A., Blumberg, G., Gozar, A., Dennis, B., Ramirez, A.P., Trebst, S.Wakimoto, S.: Antiferromagnetism in CaCu3Ti4O12 studied by magnetic Raman spectroscopy. Phys. Rev. B: Solid State 65, 52406 2002Google Scholar
18Moriya, Y., Kawaji, H., Tojo, T.Atake, T.: Low temperature heat capacity and dielectric relaxation in CaCu3Ti4O12 ceramics. Trans. Mater. Res. Soc. Jpn. 28, 137 2003Google Scholar
19FactSage, (Thermfact/CRCT, Montreal, Canada and GTT-Technologies, Aachen, Germany)Google Scholar
20Woodfield, B.F., Shapiro, J.L., Stevens, R., Boerio-Goates, J., Putnam, R.L., Helean, K.B.Navrotsky, A.: Molar heat capacity and thermodynamic functions for CaTiO3. J. Chem. Thermodyn. 31, 1573 1999CrossRefGoogle Scholar
21Navrotsky, A.: Progress and new directions in high-temperature calorimetry. Phys. Chem. Miner. 2, 89 1977Google Scholar
22Woodfield, B.F., Boerio-Goates, J., Shapiro, J.L., Putnam, R.L.Navrotsky, A.: Molar heat capacity and thermodynamic functions of zirconolite CaZrTi2O7. J. Chem. Thermodyn. 31, 245 1999CrossRefGoogle Scholar
23Liu, Y., Withers, R.L.Wei, X.Y.: Structurally frustrated relaxor ferroelectric behavior in CaCu3Ti4O12. Phys. Rev. B: Solid State 72, 134104 2005Google Scholar
24Bozin, E.S., Petkov, V., Barnes, P.W., Woodward, P.M., Vogt, T., Mahanti, S.D.Billinge, S.J.L.: Temperature dependent total scattering structural study of CaCu3Ti4O12. J. Phys.: Condens. Matter 16, S5091 2004Google Scholar
25Sasaki, S., Prewitt, C.T., Bass, J.D.Schulze, W.A.: Orthorhombic perovskite CaTiO3 and CdTiO3: Structure and space group. Acta Crystallalogr., Sect. B 43, 1668 1987Google Scholar
26Lufaso, M.W.Woodward, P.M.: Prediction of the crystal structures of perovskites using the software program SPuDS. Acta Crystallalogr., Sect. B 57, 725 2001CrossRefGoogle ScholarPubMed
27Helean, K.B., Navrotsky, A., Vance, E.R., Carter, M.L., Ebbinghaus, B., Krikorian, O., Lian, J., Wang, L.M.Catalano, J.G.: Enthalpies of formation of Ce-pyrochlore, Ca0.93Ce1.00Ti2.035O7.00, U-pyrochlore, Ca1.46U0.234+U0.466+Ti1.85O7.00 and Gd-pyrochlore, Gd2Ti2O7: Three materials relevant to the proposed waste form for excess weapons plutonium. J. Nucl. Mater. 303, 226 2002Google Scholar
28Le, S-N., Navrotsky, A.Pralong, V.: Energetics of copper diphosphates: Cu2P2O7 and Cu3(P2O6OH)2. Solid State Sci. (in press)Google Scholar
29Robie, R.A.Hemingway, B.S.: Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 pascals) pressure and at higher temperatures. U.S. Government Printing Office Washington, DC 1995 461Google Scholar